• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Statistical modeling of the human sleep process via physiological recordings

Fairley, Jacqueline Antoinette 09 January 2009 (has links)
The main objective of this work was the development of a computer-based Expert Sleep Analysis Methodology (ESAM) to aid sleep care physicians in the diagnosis of pre-Parkinson's disease symptoms using polysomnogram data. ESAM is significant because it streamlines the analysis of the human sleep cycles and aids the physician in the identification, treatment, and prediction of sleep disorders. In this work four aspects of computer-based human sleep analysis were investigated: polysomnogram interpretation, pre-processing, sleep event classification, and abnormal sleep detection. A review of previous developments in these four areas is provided along with their relationship to the establishment of ESAM. Polysomnogram interpretation focuses on the ambiguities found in human polysomnogram analysis when using the rule based 1968 sleep staging manual edited by Rechtschaffen and Kales (R&K). ESAM is presented as an alternative to the R&K approach in human polysomnogram interpretation. The second area, pre-processing, addresses artifact processing techniques for human polysomnograms. Sleep event classification, the third area, discusses feature selection, classification, and human sleep modeling approaches. Lastly, abnormal sleep detection focuses on polysomnogram characteristics common to patients suffering from Parkinson's disease. The technical approach in this work utilized polysomnograms of control subjects and pre-Parkinsonian disease patients obtained from the Emory Clinic Sleep Disorders Center (ECSDC) as inputs into ESAM. The engineering tools employed during the development of ESAM included the Generalized Singular Value Decomposition (GSVD) algorithm, sequential forward and backward feature selection algorithms, Particle Swarm Optimization algorithm, k-Nearest Neighbor classification, and Gaussian Observation Hidden Markov Modeling (GOHMM). In this study polysomnogram data was preprocessed for artifact removal and compensation using band-pass filtering and the GSVD algorithm. Optimal features for characterization of polysomnogram data of control subjects and pre-Parkinsonian disease patients were obtained using the sequential forward and backward feature selection algorithms, Particle Swarm Optimization, and k-Nearest Neighbor classification. ESAM output included GOHMMs constructed for both control subjects and pre-Parkinsonian disease patients. Furthermore, performance evaluation techniques were implemented to make conclusions regarding the constructed GOHMM's reflection of the underlying nature of the human sleep cycle.

Page generated in 0.1271 seconds