• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 405
  • 161
  • 85
  • 44
  • 26
  • 12
  • 8
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • Tagged with
  • 899
  • 104
  • 91
  • 88
  • 81
  • 73
  • 62
  • 62
  • 53
  • 51
  • 50
  • 48
  • 48
  • 46
  • 46
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Semiclassical coulomb approximation with application to single and double k-shell ionization in ion-atom collisions

Deines, Steven January 2011 (has links)
Typescript (photocopy). / Digitized by Kansas Correctional Industries
72

Excitation control of synchronous generators in electrical power systems : design using pole-placement and Inverse Nyquist Array techniques / Peter Kenneth Muttik

Muttik, Peter Kenneth January 1979 (has links)
xiii, 370 leaves : ill. ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Thesis (Ph.D.)--University of Adelaide, Dept. of Electrical Engineering, 1980
73

Modulation de l'excitabilité corticospinale et récupération des fonctions locomotrices suite à un accident vasculaire cérébral

Jouvin, Catherine. January 1900 (has links) (PDF)
Thèse (M. Sc.)--Université Laval, 2006. / Titre de l'écran-titre (visionné le 28 mars 2007). Bibliogr.
74

Optically pumped InxGa₁₋xN/InyGa₁₋yN multiple quantum well vertical cavity surface emitting laser operating at room temperature.

Chen, Zhen, Chua, Soo-Jin, Chen, Peng, Zhang, Ji 01 1900 (has links)
Room temperature vertical cavity lasing at the wavelength of 433nm has been successfully realized in InxGa₁₋xN/InyGa₁₋yN multiple quantum well without Bragg mirrors under photo-excitation. At high excitation intensity, one of the modes of the Fabry-Perot cavity formed by the GaN/sapphire and the GaN/air interfaces, shows a strong superlinear increase in intensity with excitation intensity rise. The vertical cavity surface emitting laser (VCSELs) structure is grown by metal-organic chemical vapor phase deposition and the threshold is as low as 200kW/cm². The lasing in the sample probably results from the ultrahigh material gain due to the spontaneous formation of dense array of nanoscale InGaN quantum dots (QDs) having an exceptional high area density. / Singapore-MIT Alliance (SMA)
75

An automatic voltage regulating system with Bluetooth communicating devices for brushless excitation of a synchronous generator

Tibebu, Eyuel January 2013 (has links)
This thesis has been performed in order to earn a master's degree in electrical engineering. The task was to implement an automatic voltage regulator, AVR, to control the terminal voltage of the synchronous generator Svante at the Division of Electricity at Uppsala University. The AVR uses Bluetooth technology to transfer a control signal produced by a programmable logical controller, PLC, to phase- mounted SSRs that decides what proportion of the AC from a six-phase brushless exciter that is to be used for the magnetization of the rotor. Test runs of the AVR were preformed with a regulator optimized according to the Ziegler-Nichols method and a static exciter that uses brushes and slip rings to apply voltage to the rotor winding. The results obtained complies with the assigned requirements set for this thesis and the AVR. The primary focus of this thesis mainly lies in the construction of the control system, which include the programming of both PLC and Bluetooth communicating devices.
76

A Neural Model of Call-counting in Anurans

Houtman, David B. 11 October 2012 (has links)
Temporal features in the vocalizations of animals and insects play an important role in a diverse range of species-specific activities such as mate selection, territoriality, and hunting. The neural mechanisms underlying the response to such stimuli remain largely unknown. Two species of anuran amphibian provide a starting point for the investigation of the neurological response to species-specific advertisement calls. Neurons in the anuran midbrain of Rana pipiens and Hyla regilla exhibit an atypical response when presented with a fixed number of advertisement calls. The general response to these calls is mostly inhibitory; only when the correct number of calls is presented at the correct repetition rate will this inhibition be overcome and the neurons reach a spiking threshold. In addition to rate-dependent call-counting, these neurons are sensitive to missed calls: a pause of sufficient duration—the equivalent of two missed calls—effectively resets a neuron to its initial condition. These neurons thus provide a model system for investigating the neural mechanisms underlying call-counting and interval specificity in audition. We present a minimal computational model in which competition between finely-tuned excitatory and inhibitory synaptic currents, combined with a small propagation delay between the two, broadly explains the three key features observed: rate dependence, call counting, and resetting. While limitations in the available data prevent the determination of a single set of parameters, a detailed analysis indicates that these parameters should fall within a certain range of values. Furthermore, while network effects are counter-indicated by the data, the model suggests that recruitment of neurons plays a necessary role in facilitating the excitatory response of counting neurons—although this hypothesis remains untested. Despite these limitations, the model sheds light on the mechanisms underlying the biophysics of counting, and thus provides insight into the neuroethology of amphibians in general.
77

Resonant Excitation Of Ions In Paul Trap Mass Spectrometer

Sarurkar, Vikram A 06 1900 (has links)
A Paul trap mass spectrometer has a three-electrode geometry mass analyzer consisting of two identical end cap electrodes and a ring electrode. Traditionally, the two end cap electrodes are electrically grounded and an RF potential is applied to the central ring electrode to generate the "trapping field". Ions of the analyte sample are formed in situ by electron bombardment and mass analysis of the fragment ions is performed by mass selectively destabilizing the ions from the trap. The inhornogeneities present in the trapping field (introduced either by misalignment of the trap geometry or by applying a dipolar auxiliary excitation across the end cap electrodes) give rise to various interesting phenomena including, resonance ejection of the trapped ions This thesis is concerned with taking a look into the experimental aspects associated with resonance ejection of ions caused by the dipolar excitation Additionally, u also reports the work undertaken to develop necessary instrumentation for resonant excitation experiments and my contribution to operational>zc the Paul trap mass spectrometer fabricated in the laboratory. The thesis is divided into 5 chapters. Chapter 1 is an introductory chapter. After discussing the conditions for stability of the trapped ions, it goes on to present a brief survey of a variety of applications in literature, which have used resonant excitation. Towards the end, the motivation of the present effort and the scope of work in the thesis have been spelt out. This includes (a) redesign of the ion detector electronics, (b) design of an auxiliary excitation generator, and (c) studies on resonance ejection. Chapter 2 outlines the design considerations, circuit description and fabrication details for the ion detector electronics. The circuits presented in this chapter include (a) electrometer amplifier and (b) -3 kV DC supply for the electron multiplier detector. The electrometer amplifier amplifies the ion current signal from the electron multiplier detector and it needs to have a high input impedance and a high slew rate. The electron multiplier detector requires -3 kV DC power supply for operation. The -3 kV DC power supply is required to have a regulated output voltage with low ripple in the output. Chapter 3 presents the design considerations, circuit description and fabrication details for the auxiliary excitation generator. The auxiliary excitation generator is a three channel DDS (Direct Digital Synthesis) oscillator with independent control of frequency amplitude, and phase of the output signal. Chapter 3 also discusses the micro controller based control sub-system that allows the user to set above mentioned output parameters. The control sub-system provides a user-friendly keyboard interface and 2-line alphanumeric LCD display per channel. It also provides various bus interfaces (such as I2C and SPI) to interface with DDS oscillator ICs, amplitude control DAC, and LCD displays. The chapter then goes on to describe the implementation details of the software written for the control sub-system. The hardware design is simplified by using a micro controller as heart of the control sub-system and employing the software to handle the complex functions. As an example, the design of the keyboard interface is simplified by directly connecting a matrix keyboard to the input/output port of the micro controller. The software is used to scan the keyboard, detect key press and find out the key pressed. Nonetheless, in order to meet specific performance required for the present work, the software needs to have a sense of time, be portable and scalable. Details of the "layered" architecture adopted by as to meet these specific requirements, the lower level "driver" functions implemented for various interfaces of the control sub-system, and the higher level or the "application" software, are described. The application software uses the driver functions to accomplish various tasks required to be executed by the control sub-system. Finally, the chapter presents the design consideration and fabrication details of the coupling transformer used to couple the output of the auxiliary excitation generator to the Paul trap Chapter 4 describes the resonant excitation experiments performed as part of the present work. First of all the chapter presents the improvement in the performance of the Paul trap mass spectrometer as a result of redesigned ion detector electronics It is seen that the resolution is improved significantly due to the improved response time of the electrometer amplifier. The chapter then describes the effect of the resonant excitation on the ions and also that the frequency of the applied auxiliary excitation should be between 500 kHz to 125 kHz. Next, a number of mass spectra for different frequencies of the applied auxiliary excitation are presented. These mass spectra indicate that the resonant ejection sets in for lower masses even at lower amplitude of the auxiliary excitation where as higher amplitude is required for the resonant ejection of the higher masses. It is seen that the resonant excitation of ions improves resolution of the mass spectrum. Moreover, the auxiliary excitation results in ejection of the ions at lower amplitude of the RF voltage and thus allows extending the mass range of the mass spectrometer. We present the mass spectrum of CCI4 which is not possible to normally record in our instrument. We also present results intended to understand the relation between frequency and amplitude of the auxiliary excitation on the mass spectra of benzene. Finally, results of an interesting experiment are presented which indicates the presence of the non-linear resonance points in the Paul trap. Chapter 5 presents the concluding remarks. References cited in the thesis are attached in their alphabetical order at the end of the thesis.
78

Regulation of electrical excitability individual, gender and hormonally-induced variation in potassium channel expression in the electric organ /

Few, William Preston. January 2003 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2003. / Vita. Includes bibliographical references. Available also from UMI Company.
79

Investigations on excitation and inhibition in the nervous system with special reference to the features of interaction between excitatory and inhibitory reflexes

Eccles, John Carew January 1929 (has links)
No description available.
80

Applications of multiphoton-excited photochemistry to microsecond capillary electrophoresis, photolithography, and the development of smart materials

Ritschdorff, Eric Thomas 20 October 2011 (has links)
Laser-based techniques have become essential tools for probing biological molecules in systems that demand high spatial and temporal control. This dissertation presents the development of micro-analytical techniques based on multiphoton excitation (MPE) to promote highly localized, three-dimensional (3D) photochemistry of biologically relevant molecules on submicron dimensions. Strategies based on capillary electrophoresis (CE) have been developed for the rapid separation and spectroscopic analysis of short-lived photochemical reaction products. High-speed separation and analysis are achieved through a combination of very high electric fields and a laser-based optical system that uses MPE for both the generation and detection of hydroxyindole photoproducts on the time scale of microseconds. MPE was also used for the development of photolithographic techniques for the creation of microstructured protein-based materials with highly defined three-dimensional (3D) topographies. Specifically, a multiphoton lithographic (MPL) technique was developed that used a low-cost microchip laser for the rapid prototyping of 3D microarchitectures when combined with dynamic optical masking. Furthermore, MPL was used to create novel “smart” biomaterials that reproducibly respond with tunable actuation to changes in the local chemical and thermal environment. The utility of these materials for creating biocompatible cellular microenvironments was demonstrated and presents a novel approach for studying small populations of microorganisms. Finally, through the development of a multifocal approach that used multiple laser beams to promote the photocrosslinking of biological molecules, the speed and versatility of MPL was extended to allow both the parallel fabrication of 3D microstructures and the rapid creation of large-scale biomaterials with highly defined spatial features. / text

Page generated in 0.0717 seconds