Spelling suggestions: "subject:"excitation temperature"" "subject:"axcitation temperature""
1 |
Statistical Treatment of Nuclear Energy LevelsKlump, Raymond Anthony 05 1900 (has links)
<p> Low-lying nuclear energy levels are analyzed in terms of certain parameters of the correlation between the level spacing and the excitation energy. The statistical properties of the estimates for the parameters arising from a constant nuclear temperature model are examined. Estimates are made for the parameters for the levels of Mn^56 inferred from capture gamma spectra.</p> / Thesis / Master of Science (MSc)
|
2 |
Particle Composition of High-Pressure SF_6 Plasma with Electron Temperature Greater than Gas TemperatureTanaka, Yasunori, Yokomizu, Yasunobu, Ishikawa, Motohiro, Matsumura, Toshiro 10 1900 (has links)
No description available.
|
3 |
Space and time characterization of laser-induced plasmas for applications in chemical analysis and thin film deposition / Caractérisation spatio-temporelle de plasmas induits par laser pour des applications à la chimie analytique et au dépôt de couches mincesDawood, Mahmoud 12 1900 (has links)
Après des décennies de développement, l'ablation laser est devenue une technique importante pour un grand nombre d'applications telles que le dépôt de couches minces, la synthèse de nanoparticules, le micro-usinage, l’analyse chimique, etc. Des études expérimentales ainsi que théoriques ont été menées pour comprendre les mécanismes physiques fondamentaux mis en jeu pendant l'ablation et pour déterminer l’effet de la longueur d'onde, de la durée d'impulsion, de la nature de gaz ambiant et du matériau de la cible.
La présente thèse décrit et examine l'importance relative des mécanismes physiques qui influencent les caractéristiques des plasmas d’aluminium induits par laser. Le cadre général de cette recherche forme une étude approfondie de l'interaction entre la dynamique de la plume-plasma et l’atmosphère gazeuse dans laquelle elle se développe. Ceci a été réalisé par imagerie résolue temporellement et spatialement de la plume du plasma en termes d'intensité spectrale, de densité électronique et de température d'excitation dans différentes atmosphères de gaz inertes tel que l’Ar et l’He et réactifs tel que le N2 et ce à des pressions s’étendant de 10‾7 Torr (vide) jusqu’à 760 Torr (pression atmosphérique).
Nos résultats montrent que l'intensité d'émission de plasma dépend généralement de la nature de gaz et qu’elle est fortement affectée par sa pression. En outre, pour un délai temporel donné par rapport à l'impulsion laser, la densité électronique ainsi que la température augmentent avec la pression de gaz, ce qui peut être attribué au confinement inertiel du plasma. De plus, on observe que la densité électronique est maximale à proximité de la surface de la cible où le laser est focalisé et qu’elle diminue en s’éloignant (axialement et radialement) de cette position. Malgré la variation axiale importante de la température le long du plasma, on trouve que sa variation radiale est négligeable. La densité électronique et la température ont été trouvées maximales lorsque le gaz est de l’argon et minimales pour l’hélium, tandis que les valeurs sont intermédiaires dans le cas de l’azote. Ceci tient surtout aux propriétés physiques et chimiques du gaz telles que la masse des espèces, leur énergie d'excitation et d'ionisation, la conductivité thermique et la réactivité chimique.
L'expansion de la plume du plasma a été étudiée par imagerie résolue spatio-temporellement. Les résultats montrent que la nature de gaz n’affecte pas la dynamique de la plume pour des pressions inférieures à 20 Torr et pour un délai temporel inférieur à 200 ns. Cependant, pour des pressions supérieures à 20 Torr, l'effet de la nature du gaz devient important et la plume la plus courte est obtenue lorsque la masse des espèces du gaz est élevée et lorsque sa conductivité thermique est relativement faible. Ces résultats sont confirmés par la mesure de temps de vol de l’ion Al+ émettant à 281,6 nm. D’autre part, on trouve que la vitesse de propagation des ions d’aluminium est bien définie juste après l’ablation et près de la surface de la cible. Toutefois, pour un délai temporel important, les ions, en traversant la plume, se thermalisent grâce aux collisions avec les espèces du plasma et du gaz. / After decades of development, laser ablation has become an important technique for a large number of applications such as thin film deposition, nanoparticle synthesis, micromachining, chemical analysis, etc. Experimental and theoretical studies have been conducted to understand the physical mechanisms of the laser ablation processes and their dependence on the laser wavelength, pulse duration, ambient gas and target material.
The present dissertation describes and investigates the relative importance of the physical mechanisms influencing the characteristics of aluminum laser-induced plasmas. The general scope of this research encompasses a thorough study of the interplay between the plasma plume dynamics and the ambient gas in which they expand. This is achieved by imaging and analyzing the temporal and spatial evolution the plume in terms of spectral intensity, electron density and excitation temperature within various environments extending from vacuum (10‾7 Torr) to atmospheric pressure (760 Torr), in an inert gas like Ar and He, as well as in a chemically active gas like N2.
Our results show that the plasma emission intensity generally differs with the nature of the ambient gas and it is strongly affected by its pressure. In addition, for a given time delay after the laser pulse, both electron density and plasma temperature increase with the ambient gas pressure, which is attributed to plasma confinement. Moreover, the highest electron density is observed close to the target surface, where the laser is focused and it decreases by moving away (radially and axially) from this position. In contrast with the significant axial variation of plasma temperature, there is no large variation in the radial direction. Furthermore, argon was found to produce the highest plasma density and temperature, and helium the lowest, while nitrogen yields intermediate values. This is mainly due to their physical and chemical properties such as the mass, the excitation and ionization levels, the thermal conductivity and the chemical reactivity.
The expansion of the plasma plume is studied by time- and space-resolved imaging. The results show that the ambient gas does not appreciably affect plume dynamics as long as the gas pressure remains below 20 Torr and the time delay below 200 ns. However, for pressures higher than 20 Torr, the effect of the ambient gas becomes important and the shorter plasma plume length corresponds to the highest gas mass species and the lowest thermal conductivity. These results are confirmed by Time-Of-Flight (TOF) measurements of Al+ line emitted at 281.6 nm. Moreover, the velocity of aluminum ions is well defined at the earliest time and close to the target surface. However, at later times, the ions travel through the plume and become thermalized through collisions with plasma species and with surrounding ambient gas.
|
4 |
Laser-induced breakdown spectroscopy (LIBS) on geological samples : compositional differentiation and relative hardness quantificationPanya panya, Sipokazi Ntombifikile 02 1900 (has links)
This master’s thesis is focused on the LIBS technique for compositional differentiation and relative hardness quantification of selected geological samples. The experimental part of this thesis was conducted at the National Institute of Laser Enhanced Sciences (NILES) in Cairo, Egypt where a simple LIBS system was constructed. In parallel to the experimental work, the literature review was surveyed with the aim to give a thorough view of the history, fundamentals and all the factors related to LIBS. LIBS is a developing analytical technique, which is used to perform qualitative and semi-quantitative elemental analysis of materials (solid, liquid and gas). The fast data collection and the lack of sample preparation made LIBS be an attractive technique to be used for geological samples. This study was done to improve analytical methods for geochemical analysis of samples during different exploration phases (Mining, filed analysis, etc.), as a real-time analysis method to save money and time spent in labs. For a generation of laser induced plasma, a Q-switched Nd: YAG laser operated at 10 Hz and wavelength of 1064 nm was employed on the surface of the samples. A spectrometer fitted with an intensified charge-coupled device (ICCD) was used to disperse and detect the spectrum; then fed to a computer for recording and further processing of the data. The sample set was compiled from samples collected from different areas (South Africa and Namibia). Using principal component analysis (PCA), it was found that LIBS was able to differentiate between the samples even those of the same area. The results from the LIBS technique were correlated with subsequent analysis of the same samples by Particle-induced X-ray emission (PIXE). The feasibility of relative hardness estimation using LIBS was done by measuring the plasma excitation temperature for different samples. LIBS with its advantages as an elemental analysis technique made it possible to estimate the hardness of geological samples. Based on theory and results, an analytical technique for compositional differentiation and quantification of relative hardness of geological samples is proposed. / National Research Foundation (South Africa) / Physics / M Sc. (Physics)
|
Page generated in 0.0994 seconds