Spelling suggestions: "subject:"exciton spin mixing"" "subject:"éxciton spin mixing""
1 |
Optical time resolved spin dynamics in III V semiconductor quantum wellsBrand, Matthew Anthony January 2003 (has links)
No description available.
|
2 |
Charge-carrier dynamics in organic LEDsKirch, Anton 27 February 2023 (has links)
Anyone who decides to buy a new mobile phone today is likely to buy a screen made from organic light-emitting diodes (OLEDs). OLEDs are a relatively new display technology and will probably account for the largest market share in the upcoming years. This is due to their brilliant colors, high achievable display resolution, and comparably simple processing. Since they are not based on the rigid crystal structure of classical semiconductors and can be produced as planar thin-film modules, they also enable the fabrication of large-area lamps on flexible substrates – an attractive scenario for future lighting systems. Despite these promising properties, the breakthrough of OLED lighting technology is still pending and requires further research.
The charge-carrier dynamics in an OLED determine its device functionality and, therefore, enable the understanding of fundamental physical concepts and phenomena.
From the description of charge-carrier dynamics, this work derives experimental methods and device concepts to optimize the efficiency and stability of OLEDs. OLEDs feature an electric current of charge carriers (electrons and holes) that are intended to recombine under the emission of light. This process is preceded by charge-carrier injection and their transport to the emission layer. These three aspects are discussed together in this work. First, a method is presented that quantifies injection resistances using a simple experiment. It provides a valuable opportunity to better understand and optimize injection layers. Subsequently, the charge carrier transport at high electrical currents, as required for OLEDs as bright lighting elements, will be investigated. Here, electro-thermal effects are presented that form physical limits for the design and function of OLED modules and explain their sudden failure. Finally, the dynamics and recombination of electro-statically bound charge carrier pairs, so-called excitons, are examined. Various options are presented for manipulating exciton dynamics in such a way that the emission behavior of the OLED can be adjusted according to specific requirements.:List of publications . . . . . . . . . . . . . . . . . v
List of abbreviations . . . . . . . . . . . . . . . . . ix
1 Introduction . . . . . . . . . . . . . . . . . 1
2 Fundamentals . . . . . . . . . . . . . . . . . 5
2.1 Light sources and the human society . . . . . . . . . . . . . . . . . 5
2.1.1 Human light perception . . . . . . . . . . . . . . . . . . . . 8
2.1.2 Physical light quantification . . . . . . . . . . . . . . . . . . 10
2.1.3 Non-visual light impact . . . . . . . . . . . . . . . . . . . . . 13
2.1.4 Implications for modern light sources . . . . . . . . . . . . . 15
2.2 Organic semiconductors . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.1 Molecular energy states . . . . . . . . . . . . . . . . . . . . . 18
2.2.2 Intramolecular state transitions . . . . . . . . . . . . . . . . 24
2.2.3 Molecular films . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2.4 Electrical doping . . . . . . . . . . . . . . . . . . . . . . . . 34
2.2.5 Charge-carrier transport . . . . . . . . . . . . . . . . . . . . 36
2.2.6 Exciton formation and recombination . . . . . . . . . . . . . 38
2.2.7 Exciton transfer . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.3 Organic light-emitting diodes . . . . . . . . . . . . . . . . . . . . . 44
2.3.1 Structure and operation principle . . . . . . . . . . . . . . . 44
2.3.2 Metal-semiconductor interfaces . . . . . . . . . . . . . . . . 47
2.3.3 Typical operation characteristics . . . . . . . . . . . . . . . . 49
2.4 Colloidal nanocrystal emitters . . . . . . . . . . . . . . . . . . . . . 52
2.4.1 Terminology: Nanocrystals and quantum dots . . . . . . . . 52
2.4.2 The particle-in-a-box model . . . . . . . . . . . . . . . . . . 54
2.4.3 Surface passivation . . . . . . . . . . . . . . . . . . . . . . . 55
3 Materials and methods . . . . . . . . . . . . . . . . . 57
3.1 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.1.1 OLED materials . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.1.2 Materials for photoluminescence . . . . . . . . . . . . . . . . 60
3.2 Sample preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.2.1 Thermal evaporation . . . . . . . . . . . . . . . . . . . . . . 62
3.2.2 Solution processing . . . . . . . . . . . . . . . . . . . . . . . 64
3.3 Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.3.1 Absorbance spectroscopy . . . . . . . . . . . . . . . . . . . . 66
3.3.2 Photoluminescence quantum yield . . . . . . . . . . . . . . . 66
3.3.3 Excitation sources . . . . . . . . . . . . . . . . . . . . . . . 67
3.3.4 Sensitive EQE for absorber materials . . . . . . . . . . . . . 68
3.4 Exciton-lifetime analysis . . . . . . . . . . . . . . . . . . . . . . . . 69
3.4.1 Triplet lifetime . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.4.2 Singlet-state lifetime . . . . . . . . . . . . . . . . . . . . . . 70
3.4.3 Lifetime extraction . . . . . . . . . . . . . . . . . . . . . . . 70
3.5 OLED characterization . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.5.1 Current-voltage-luminance and quantum efficiency . . . . . . 73
3.5.2 Temperature-controlled evaluation . . . . . . . . . . . . . . . 74
4 Charge-carrier injection into doped organic films . . . . . . . . . . . . . . . . . 77
4.1 Ohmic injection contacts . . . . . . . . . . . . . . . . . . . . . . . . 79
4.2 Device architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.2.1 Conception . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.2.2 Device symmetry . . . . . . . . . . . . . . . . . . . . . . . . 80
4.2.3 Device homogeneity . . . . . . . . . . . . . . . . . . . . . . . 83
4.3 Resistance characteristics . . . . . . . . . . . . . . . . . . . . . . . . 84
4.3.1 Experimental results . . . . . . . . . . . . . . . . . . . . . . 84
4.3.2 Equivalent-circuit development . . . . . . . . . . . . . . . . 85
4.4 Impedance spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . 92
4.4.1 Measurement fundamentals . . . . . . . . . . . . . . . . . . 92
4.4.2 Thickness dependence . . . . . . . . . . . . . . . . . . . . . 93
4.4.3 Temperature dependence . . . . . . . . . . . . . . . . . . . . 95
4.5 Depletion zone variation . . . . . . . . . . . . . . . . . . . . . . . . 97
4.6 Molybdenum oxide as a case study . . . . . . . . . . . . . . . . . . 99
5 Charge-carrier transport and self-heating in OLED lighting . . . . . . . . . . . . . . . . .101
5.1 Joule self-heating in OLEDs . . . . . . . . . . . . . . . . . . . . . . 104
5.1.1 Electrothermal feedback . . . . . . . . . . . . . . . . . . . . 104
5.1.2 Thermistors . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.1.3 Cooling strategies . . . . . . . . . . . . . . . . . . . . . . . . 106
5.2 Self-heating causes lateral luminance inhomogeneities in OLEDs . . 108
5.2.1 The influence of transparent electrodes . . . . . . . . . . . . 108
5.2.2 Luminance inhomogeneities in large OLED panels . . . . . . 110
5.3 Electrothermal OLED models . . . . . . . . . . . . . . . . . . . . . 112
5.3.1 Perceiving an OLED as thermistor array . . . . . . . . . . . 112
5.3.2 The OLED as a single three-layer thermistor . . . . . . . . . 114
5.3.3 A numerical 3D model of heat and current flow . . . . . . . 116
5.4 OLED stack and experimental conception . . . . . . . . . . . . . . 118
5.5 The Switch-back effect in planar light sources . . . . . . . . . . . . 120
5.5.1 Predictions from numerical 3D modeling . . . . . . . . . . . 121
5.5.2 Experimental proof . . . . . . . . . . . . . . . . . . . . . . . 124
5.5.3 Variation of vertical heat flux . . . . . . . . . . . . . . . . . 127
5.5.4 Variation of the OLED area . . . . . . . . . . . . . . . . . . 131
5.6 Electrothermal tristabilities in OLEDs . . . . . . . . . . . . . . . . 133
5.6.1 Observing different burn-in schematics . . . . . . . . . . . . 133
5.6.2 Bistability and tristability in organic semiconductors . . . . 134
5.6.3 Experimental indications for attempted branch hopping . . . 138
5.6.4 Saving bright OLEDs from burning in . . . . . . . . . . . . 144
5.6.5 Taking another view onto the camera pictures . . . . . . . . 145
6 Charge-carrier recombination and exciton management . . . . . . . . . . . . . . . . .147
6.1 Optical down conversion . . . . . . . . . . . . . . . . . . . . . . . . 149
6.1.1 Spectral reshaping of visible OLEDs . . . . . . . . . . . . . 149
6.1.2 Infrared-emitting OLEDs . . . . . . . . . . . . . . . . . . . . 155
6.2 Dual-state Förster transfer . . . . . . . . . . . . . . . . . . . . . . . 158
6.2.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
6.2.2 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
6.3 Singlet fission and triplet fusion in rubrene . . . . . . . . . . . . . . 161
6.3.1 Photoluminescence of pure and doped rubrene films . . . . . 163
6.3.2 Electroluminescence transients of rubrene OLEDs . . . . . . 172
6.4 Charge transfer-state tuning by electric fields . . . . . . . . . . . . . 177
6.4.1 CT-state tuning via doping variation . . . . . . . . . . . . . 177
6.4.2 CT-state tuning via voltage . . . . . . . . . . . . . . . . . . 180
6.5 Excursus: Exciton-spin mixing for wavelength identification . . . . 183
6.5.1 Characteristics of the active film . . . . . . . . . . . . . . . . 184
6.5.2 Conception . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
6.5.3 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
6.5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
6.5.5 Application demonstrations . . . . . . . . . . . . . . . . . . 192
6.5.6 All-organic device . . . . . . . . . . . . . . . . . . . . . . . . 195
6.5.7 Device limitations and prospects . . . . . . . . . . . . . . . . 198
7 Conclusion and outlook . . . . . . . . . . . . . . . . . 207
7.1 Charge-carrier injection into doped films . . . . . . . . . . . . . . . 207
7.2 Charge-carrier transport in hot OLEDs . . . . . . . . . . . . . . . . 208
7.2.1 Prospects for OLED lighting facing tristable behavior . . . . 209
7.2.2 Outlook: Accessing the hidden PDR 2 region . . . . . . . . . 210
7.3 Charge-carrier recombination and spin mixing . . . . . . . . . . . . 211
7.3.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
7.3.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
Bibliography. . . . . . . . . . . . . . . . . 215
Acknowledgements . . . . . . . . . . . . . . . . . 249 / Wer sich heute für ein neues Mobiltelefon entscheidet, kauft damit wahrscheinlich einen Bildschirm aus organischen Leuchtdioden (OLEDs). Durch ihre brillanten Farben, die hohe erreichbare Auflösung und eine vergleichsweise einfache Prozessierung werden OLEDs als relativ neue Bildschirmtechnologie in den nächsten Jahren wohl den größten Marktanteil ausmachen. Da sie nicht auf der starren Kristallstruktur klassischer Halbleiter beruhen und als planare Dünnschichtmodule produziert werden können, ermöglichen sie außerdem die Fertigung großer Flächenstrahler auf flexiblen Substraten – ein sehr attraktives Szenario für zukünftige Beleuchtungssysteme. Trotz dieser vielversprechenden Eigenschaften steht der Durchbruch der OLED-Technologie als Leuchtmittel noch aus und erfordert weitere Forschung. Die Dynamik der Ladungsträger (Elektronen und Löcher) in einer OLED charakterisiert wichtige Teile der Bauteilfunktion und ermöglicht daher das Verständnis grundlegender physikalischer Konzepte und Phänomene. Diese Arbeit leitet anhand dieser Beschreibung experimentelle Methoden und Bauteilkonzepte ab, um die Effizienz und Stabilität von OLEDs zu optimieren.
OLEDs zeichnen sich dadurch aus, dass ein elektrischer Strom aus Ladungsträgern (Elektronen und Löchern) möglichst effizient unter Aussendung von Licht rekombiniert. Diesem Prozess geht eine Ladungsträgerinjektion und deren Transport zur Emissionsschicht voraus. Diese drei Aspekte werden in dieser Arbeit zusammenhängend diskutiert. Als erstes wird eine Methode vorgestellt, die Injektionswiderstände anhand eines einfachen Experimentes quantifiziert. Sie bildet eine wertvolle Möglichkeit, Injektionsschichten besser zu verstehen und zu optimieren. Anschließend wird der Ladungsträgertransport bei hohen elektrischen Strömen untersucht, wie sie für OLEDs als helle Beleuchtungselemente nötig sind. Hier werden elektro-thermische Effekte vorgestellt, die physikalische Grenzen für das Design und die Funktion von OLED Modulen bilden und deren plötzliches Versagen erklären. Abschließend wird die Dynamik der stark elektrostatisch gebundenen Ladungsträgerpaare, sogenannter Exzitonen, kurz vor deren Rekombination untersucht. Es werden verschiedene Möglichkeiten vorgestellt sie so zu manipulieren, dass sich das Abstrahlverhalten der OLED anhand bestimmter Anforderungen einstellen lässt.:List of publications . . . . . . . . . . . . . . . . . v
List of abbreviations . . . . . . . . . . . . . . . . . ix
1 Introduction . . . . . . . . . . . . . . . . . 1
2 Fundamentals . . . . . . . . . . . . . . . . . 5
2.1 Light sources and the human society . . . . . . . . . . . . . . . . . 5
2.1.1 Human light perception . . . . . . . . . . . . . . . . . . . . 8
2.1.2 Physical light quantification . . . . . . . . . . . . . . . . . . 10
2.1.3 Non-visual light impact . . . . . . . . . . . . . . . . . . . . . 13
2.1.4 Implications for modern light sources . . . . . . . . . . . . . 15
2.2 Organic semiconductors . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.1 Molecular energy states . . . . . . . . . . . . . . . . . . . . . 18
2.2.2 Intramolecular state transitions . . . . . . . . . . . . . . . . 24
2.2.3 Molecular films . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2.4 Electrical doping . . . . . . . . . . . . . . . . . . . . . . . . 34
2.2.5 Charge-carrier transport . . . . . . . . . . . . . . . . . . . . 36
2.2.6 Exciton formation and recombination . . . . . . . . . . . . . 38
2.2.7 Exciton transfer . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.3 Organic light-emitting diodes . . . . . . . . . . . . . . . . . . . . . 44
2.3.1 Structure and operation principle . . . . . . . . . . . . . . . 44
2.3.2 Metal-semiconductor interfaces . . . . . . . . . . . . . . . . 47
2.3.3 Typical operation characteristics . . . . . . . . . . . . . . . . 49
2.4 Colloidal nanocrystal emitters . . . . . . . . . . . . . . . . . . . . . 52
2.4.1 Terminology: Nanocrystals and quantum dots . . . . . . . . 52
2.4.2 The particle-in-a-box model . . . . . . . . . . . . . . . . . . 54
2.4.3 Surface passivation . . . . . . . . . . . . . . . . . . . . . . . 55
3 Materials and methods . . . . . . . . . . . . . . . . . 57
3.1 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.1.1 OLED materials . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.1.2 Materials for photoluminescence . . . . . . . . . . . . . . . . 60
3.2 Sample preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.2.1 Thermal evaporation . . . . . . . . . . . . . . . . . . . . . . 62
3.2.2 Solution processing . . . . . . . . . . . . . . . . . . . . . . . 64
3.3 Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.3.1 Absorbance spectroscopy . . . . . . . . . . . . . . . . . . . . 66
3.3.2 Photoluminescence quantum yield . . . . . . . . . . . . . . . 66
3.3.3 Excitation sources . . . . . . . . . . . . . . . . . . . . . . . 67
3.3.4 Sensitive EQE for absorber materials . . . . . . . . . . . . . 68
3.4 Exciton-lifetime analysis . . . . . . . . . . . . . . . . . . . . . . . . 69
3.4.1 Triplet lifetime . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.4.2 Singlet-state lifetime . . . . . . . . . . . . . . . . . . . . . . 70
3.4.3 Lifetime extraction . . . . . . . . . . . . . . . . . . . . . . . 70
3.5 OLED characterization . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.5.1 Current-voltage-luminance and quantum efficiency . . . . . . 73
3.5.2 Temperature-controlled evaluation . . . . . . . . . . . . . . . 74
4 Charge-carrier injection into doped organic films . . . . . . . . . . . . . . . . . 77
4.1 Ohmic injection contacts . . . . . . . . . . . . . . . . . . . . . . . . 79
4.2 Device architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.2.1 Conception . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.2.2 Device symmetry . . . . . . . . . . . . . . . . . . . . . . . . 80
4.2.3 Device homogeneity . . . . . . . . . . . . . . . . . . . . . . . 83
4.3 Resistance characteristics . . . . . . . . . . . . . . . . . . . . . . . . 84
4.3.1 Experimental results . . . . . . . . . . . . . . . . . . . . . . 84
4.3.2 Equivalent-circuit development . . . . . . . . . . . . . . . . 85
4.4 Impedance spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . 92
4.4.1 Measurement fundamentals . . . . . . . . . . . . . . . . . . 92
4.4.2 Thickness dependence . . . . . . . . . . . . . . . . . . . . . 93
4.4.3 Temperature dependence . . . . . . . . . . . . . . . . . . . . 95
4.5 Depletion zone variation . . . . . . . . . . . . . . . . . . . . . . . . 97
4.6 Molybdenum oxide as a case study . . . . . . . . . . . . . . . . . . 99
5 Charge-carrier transport and self-heating in OLED lighting . . . . . . . . . . . . . . . . .101
5.1 Joule self-heating in OLEDs . . . . . . . . . . . . . . . . . . . . . . 104
5.1.1 Electrothermal feedback . . . . . . . . . . . . . . . . . . . . 104
5.1.2 Thermistors . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.1.3 Cooling strategies . . . . . . . . . . . . . . . . . . . . . . . . 106
5.2 Self-heating causes lateral luminance inhomogeneities in OLEDs . . 108
5.2.1 The influence of transparent electrodes . . . . . . . . . . . . 108
5.2.2 Luminance inhomogeneities in large OLED panels . . . . . . 110
5.3 Electrothermal OLED models . . . . . . . . . . . . . . . . . . . . . 112
5.3.1 Perceiving an OLED as thermistor array . . . . . . . . . . . 112
5.3.2 The OLED as a single three-layer thermistor . . . . . . . . . 114
5.3.3 A numerical 3D model of heat and current flow . . . . . . . 116
5.4 OLED stack and experimental conception . . . . . . . . . . . . . . 118
5.5 The Switch-back effect in planar light sources . . . . . . . . . . . . 120
5.5.1 Predictions from numerical 3D modeling . . . . . . . . . . . 121
5.5.2 Experimental proof . . . . . . . . . . . . . . . . . . . . . . . 124
5.5.3 Variation of vertical heat flux . . . . . . . . . . . . . . . . . 127
5.5.4 Variation of the OLED area . . . . . . . . . . . . . . . . . . 131
5.6 Electrothermal tristabilities in OLEDs . . . . . . . . . . . . . . . . 133
5.6.1 Observing different burn-in schematics . . . . . . . . . . . . 133
5.6.2 Bistability and tristability in organic semiconductors . . . . 134
5.6.3 Experimental indications for attempted branch hopping . . . 138
5.6.4 Saving bright OLEDs from burning in . . . . . . . . . . . . 144
5.6.5 Taking another view onto the camera pictures . . . . . . . . 145
6 Charge-carrier recombination and exciton management . . . . . . . . . . . . . . . . .147
6.1 Optical down conversion . . . . . . . . . . . . . . . . . . . . . . . . 149
6.1.1 Spectral reshaping of visible OLEDs . . . . . . . . . . . . . 149
6.1.2 Infrared-emitting OLEDs . . . . . . . . . . . . . . . . . . . . 155
6.2 Dual-state Förster transfer . . . . . . . . . . . . . . . . . . . . . . . 158
6.2.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
6.2.2 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
6.3 Singlet fission and triplet fusion in rubrene . . . . . . . . . . . . . . 161
6.3.1 Photoluminescence of pure and doped rubrene films . . . . . 163
6.3.2 Electroluminescence transients of rubrene OLEDs . . . . . . 172
6.4 Charge transfer-state tuning by electric fields . . . . . . . . . . . . . 177
6.4.1 CT-state tuning via doping variation . . . . . . . . . . . . . 177
6.4.2 CT-state tuning via voltage . . . . . . . . . . . . . . . . . . 180
6.5 Excursus: Exciton-spin mixing for wavelength identification . . . . 183
6.5.1 Characteristics of the active film . . . . . . . . . . . . . . . . 184
6.5.2 Conception . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
6.5.3 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
6.5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
6.5.5 Application demonstrations . . . . . . . . . . . . . . . . . . 192
6.5.6 All-organic device . . . . . . . . . . . . . . . . . . . . . . . . 195
6.5.7 Device limitations and prospects . . . . . . . . . . . . . . . . 198
7 Conclusion and outlook . . . . . . . . . . . . . . . . . 207
7.1 Charge-carrier injection into doped films . . . . . . . . . . . . . . . 207
7.2 Charge-carrier transport in hot OLEDs . . . . . . . . . . . . . . . . 208
7.2.1 Prospects for OLED lighting facing tristable behavior . . . . 209
7.2.2 Outlook: Accessing the hidden PDR 2 region . . . . . . . . . 210
7.3 Charge-carrier recombination and spin mixing . . . . . . . . . . . . 211
7.3.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
7.3.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
Bibliography. . . . . . . . . . . . . . . . . 215
Acknowledgements . . . . . . . . . . . . . . . . . 249
|
3 |
Accurate wavelength tracking by exciton spin mixingKirch, Anton, Bärschneider, Toni, Achenbach, Tim, Fries, Felix, Gmelch, Max, Werberger, Robert, Guhrenz, Chris, Tomkevičienė, Aušra, Benduhn, Johannes, Eychmüller, Alexander, Leo, Karl, Reineke, Sebastian 06 June 2024 (has links)
Wavelength-discriminating systems typically consist of heavy benchtop-based instruments, comprising diffractive optics, moving parts, and adjacent detectors. For simple wavelength measurements, such as lab-on-chip light source calibration or laser wavelength tracking, which do not require polychromatic analysis and cannot handle bulky spectroscopy instruments, lightweight, easy-to-process, and flexible single-pixel devices are attracting increasing attention. Here, a device is proposed for monotonously transforming wavelength information into the time domain with room-temperature phosphorescence at the heart of its functionality, which demonstrates a resolution down to 1 nm and below. It is solution-processed from a single host–guest system comprising organic room-temperature phosphors and colloidal quantum dots. The share of excited triplet states within the photoluminescent layer is dependent on the excitation wavelength and determines the afterglow intensity of the film, which is tracked by a simple photodetector. Finally, an all-organic thin-film wavelength sensor and two applications are demonstrated where this novel measurement concept successfully replaces a full spectrometer.
|
Page generated in 0.0931 seconds