Spelling suggestions: "subject:"exhaust gas recirculation"" "subject:"exhausta gas recirculation""
11 |
Modelling of a Variable Venturi in a Heavy Duty Diesel Engine / Modellering av variabel venturi i en dieselmotor för tung lastbilTorbjörnsson, Carl-Adam January 2002 (has links)
The objectives in this thesis are to present a model of a variable venturi in an exhaust gas recirculation (EGR) system located in a heavy duty diesel engine. A new legislation called EURO~4 will come into force in 2005 which affects truck development and it will require an On-Board Diagnostic system in the truck. If model based diagnostic systems are to be used, one of the advantages is that the system performance will increase if a model of a variable venturi is used. Three models with different complexity are compared in ten different experiments. The experiments are performed in a steady flow rig at different percentage of EGR gases and venturi areas. The model predicts the mass flow through the venturi. The results show that the first model with fewer simplifications performs better and has fewer errors than the other two models. The simplifications that differ between the models are initial velocity before the venturi and the assumption of incompressible flow. The model that shows the best result is not proposed by known literature in this area of knowledge and technology. This thesis shows that further studies and work on this model, the model with fewer simplifications, can be advantageous.
|
12 |
Recognizing Combustion Variability for Control of Gasoline Engine Exhaust Gas Recirculation using Information from the Ion CurrentHolub, Anna, Liu, Jie January 2006 (has links)
The ion current measured from the spark plug in a spark ignited combustion engine is used as basis for analysis and control of the combustion variability caused by exhaust gas recirculation. Methods for extraction of in-cylinder pressure information from the ion current are analyzed in terms of reliability and processing efficiency. A model for the recognition of combustion variability using this information is selected and tested on both simulated and car data.
|
13 |
Modelling of a Variable Venturi in a Heavy Duty Diesel Engine / Modellering av variabel venturi i en dieselmotor för tung lastbilTorbjörnsson, Carl-Adam January 2002 (has links)
<p>The objectives in this thesis are to present a model of a variable venturi in an exhaust gas recirculation (EGR) system located in a heavy duty diesel engine. A new legislation called EURO~4 will come into force in 2005 which affects truck development and it will require an On-Board Diagnostic system in the truck. If model based diagnostic systems are to be used, one of the advantages is that the system performance will increase if a model of a variable venturi is used. </p><p>Three models with different complexity are compared in ten different experiments. The experiments are performed in a steady flow rig at different percentage of EGR gases and venturi areas. The model predicts the mass flow through the venturi. The results show that the first model with fewer simplifications performs better and has fewer errors than the other two models. The simplifications that differ between the models are initial velocity before the venturi and the assumption of incompressible flow. </p><p>The model that shows the best result is not proposed by known literature in this area of knowledge and technology. This thesis shows that further studies and work on this model, the model with fewer simplifications, can be advantageous.</p>
|
14 |
Model Predictive Control for Automotive Engine Torque Considering Internal Exhaust Gas RecirculationHayakawa, Yoshikazu, Jimbo, Tomohiko 09 1900 (has links)
the 18th World Congress The International Federation of Automatic Control, Milano (Italy), August 28 - September 2, 2011
|
15 |
HYDROGEN-FIRED GAS TURBINE FOR POWER GENERATION WITH EXHAUST GAS RECIRCULATION : Emission and economic evaluation of pure hydrogen compare to natural gasGibrael, Nemir, Hassan, Hamse January 2019 (has links)
The member states of European Union aim to promote the reduction of harmful emissions. Emissions from combustion processes cause effects on human health and pose environmental issues, for example by increasing greenhouse effect. There are two ways to reduce emissions; one is to promote renewable energy sources and the other to utilize more effectively the available fossil fuels until a long-term solution is available. Hence, it is necessary to strive for CO2 mitigation technologies applied to fossil fuels. Low natural gas prices together with high energy efficiency have made gas turbines popular in the energy market. But, gas turbine fired with natural gas come along with emissions of CO2, NOx and CO. However, these disadvantages can be eliminated by using gas turbine with precombustion CO2 capture, separating carbon from the fuel by using fuel reforming process and feeding pure hydrogen as a fuel. Hydrogen fired gas turbines are used in two applications such as a gas turbine with pre-combustion CO2 capture and for renewable power plants where hydrogen is stored in case as a backup plan. Although the CO2 emissions are reduced in a hydrogen fired gas turbine with a pre-combustion CO2 capture, there are still several challenges such as high flame temperatures resulting in production of thermal NOx. This project suggests a method for application of hydrogen fired gas turbine, using exhaust gas recirculation to reduce flame temperature and thus reducing thermal NOx. A NOx emission model for a hydrogen-fired gas turbine was built from literature data and used to select the best operating conditions for the plant. In addition, the economic benefits of switching from natural gas to pure hydrogen are reported. For the techno-economic analysis, investment costs and operating costs were taken from the literature, and an economic model was developed. To provide sensitivity analysis for the techno-economic calculation, three cases were studied. Literature review was carried out on several journal articles and websites to gain understanding on hydrogen and natural gas fired gas turbines. Results showed that, in the current state, pure hydrogen has high delivery cost both in the US and Europe. While it’s easy to access natural gas at low cost, therefore in the current state gas turbine fired with natural gas are more profitable than hydrogen fired gas turbine. But, if targeted hydrogen prices are reached while fuel reforming process technology are developed in the coming future the hydrogen fired gas turbine will compete seriously with natural gas.
|
16 |
Selective exhaust gas recirculation in combined cycle gas turbine power plants with post-combustion carbon captureHerraiz Palomino, Laura January 2017 (has links)
Selective Exhaust Gas Recirculation (S-EGR) consists of selectively transferring CO2 from the exhaust gas stream of a gas-fired power plant into the air stream entering the gas turbine compressor. Unlike in “non-selective” Exhaust Gas Recirculation (EGR) technology, recirculation of, principally, nitrogen does not occur, and the gas turbine still operates with a large excess of air. Two configurations are proposed: one with the CO2 transfer system operating in parallel to the post-combustion carbon capture (PCC) unit; the other with the CO2 transfer system operating downstream of, and in series to, the PCC unit. S-EGR allows for higher CO2 concentrations in the flue gas of approximately 13-14 vol%, compared to 6.6 vol% with EGR at 35% recirculation ratio. The oxygen levels in the combustor are approximately 19 vol%, well above the minimum limit of 16 vol% with 35% EGR reported in literature. At these operating conditions, process model simulations show that the current class of gas turbine engines can operate without a significant deviation in the compressor and the turbine performance from the design conditions. Compressor inlet temperature and CO2 concentration in the working fluid are critical parameters in the assessment of the effect on the gas turbine net power output and efficiency. A higher turbine exhaust temperature allows the generation of additional steam which results in a marginal increase in the combined cycle net power output of 5% and 2% in the investigated configurations with S-EGR in parallel and S-EGR in series, respectively. With aqueous monoethanolamine scrubbing technology, S-EGR leads to operation and cost benefits. S-EGR in parallel operating at 70% recirculation, 97% selective CO2 transfer efficiency and 96% PCC efficiency results in a reduction of 46% in packing volume and 5% in specific reboiler duty, compared to air-based combustion CCGT with PCC, and of 10% in packing volume and 2% in specific reboiler duty, compared to 35% EGR. S-EGR in series operating at 95% selective CO2 transfer efficiency and 32% PCC efficiency results in a reduction of 64% in packing volume and 7% in specific reboiler duty, compared to air-based, and of 40% in packing volume and 4% in specific reboiler duty, compared to 35% EGR. An analysis of key performance indicators for selective CO2 transfer proposes physical adsorption in rotary wheel systems as an alternative to selective CO2 membrane systems. A conceptual design assessment with two commercially available adsorbent materials, activated carbon and Zeolite X13, shows that it is possible to regenerate the adsorbent with air at near ambient temperature and pressure. Yet, a significant step change in adsorbent materials is necessary to design rotary adsorption systems with dimensions comparable to the largest rotary gas/gas heat exchanger used in coal-fired power plants, i.e. approximately 24 m diameter and 2 m height. An optimisation study provides guidelines on the equilibrium parameters for the development of materials. Finally, a technical feasibility study of configuration options with rotary gas/gas heat exchangers shows that cooling water demand around the post-combustion CO2 capture system can be drastically reduced using dry cooling systems where gas/gas heat exchangers use ambient air as the cooling fluid. Hybrid cooling configurations reduce cooling and process water demand in the direct contact cooler of a wet cooling system by 67% and 35% respectively, and dry cooling configurations eliminate the use of process and cooling water and achieve adequate gas temperature entering the absorber.
|
17 |
Recirkulace výfukových plynů zážehového motoru / Exhaust Gas Recirculation of a Spark-ignition EngineDohnal, Martin January 2018 (has links)
This master‘s thesis deals with design adjustment of spark ignition combustion engine, which might offer larger share of recirculated exhaust gases in cylinder for reaching a large number of benefits that exhaust gas recirculation can offer. The introductory theoretical part describes exhaust gas recirculation and its influence on spark ignition combustion engine. In the following part the methods of mixture layering and types of intake ports are described. Further design of spiral intake port is made based on calculations. Capability of mixture layering is valuated by numerical simulation. Flow properties of intake ports are compared to production version by an experiment on flow station.
|
18 |
Analysis of the high pressure EGR dispersion among cylinders in automotive diesel enginesMiguel García, Julián 19 February 2021 (has links)
[ES] Los objetivos son 2: 1- Determinar el efecto de la dispersión de la recirculación de gases de escape de alta presión (HP EGR) en las emisiones de NOx y humos en motores diésel de automoción en operaciones de funcionamiento constantes. La investigación cuantifica las emisiones de NOx y humos en función del nivel de dispersión de EGR de alta presión entre cilindros. 2- Explorar los límites del modelado 1D para predecir el movimiento del flujo de los gases en la compleja situación en la que estos entran en los cilindros desde el colector de admisión. Los experimentos se realizaron en un banco de pruebas con un motor diésel de 1.6 litros. Para detectar la dispersión de EGR de alta presión se instaló un sistema de válvulas en los conductos de admisión de cada cilindro para medir la concentración de CO2, por tanto la tasa de EGR, en cada conducto. Se instaló también un sistema de válvulas en el escape para medir las emisiones de NOx en cada cilindro. Se instaló un sensor de humos en la línea de escape, aguas abajo de la turbina, para medir el efecto de la dispersión de EGR de alta presión en las emisiones de humos además del sensor para medir el resto de las emisiones contaminantes aguas abajo de la turbina. Se han estudiado 9 puntos de funcionamiento diferentes con distintas velocidades y niveles de carga. El mapa motor se ha estudiado en profundidad, desde 1250 hasta 3000 rpm y entre 3 y 20 bar de presión media efectiva (BMEP). La tasa de EGR varía entre 5 y 42%, dependiendo del punto de funcionamiento. La geometría del modelo reproduce la del motor diésel de automoción de 1.6 litros en el que se realizaron los ensayos experimentales. Incluyendo la línea de EGR de alta presión que fue instalada para controlar los niveles de dispersión durante los ensayos experimentales. La metodología centrada en las herramientas experimentales combina aparatos de medida tradicional con un sistema de válvulas específico que ofrecen una información precisa en cuanto a la concentración de especies tanto en el colector de admisión como en el de escape. El estudio se realizó a emisiones de NOx constantes para observar el efecto de la dispersión de EGR en los valores de opacidad. La metodología está centrada en las herramientas de modelado, las condiciones de contorno y toda la información necesaria para poner en marcha el modelo proviene de los resultados de los ensayos experimentales medidos con los diferentes sensores y aparatos mencionados anteriormente. Muchos de ellos necesarios para ajustar el modelo. La parte más importante para estudiar la capacidad de predicción del modelo es el diseño del colector de admisión. Es necesario poner especial atención en la orientación de los conductos, y en la estructura interna y la superficie para tratar de ser muy fiel a la geometría real, ya que ello determina la predicción de la dispersión. Esta aproximación de modelado cuasi tridimensional (3D) es posible gracias a un programa específico que importa la información necesaria desde un archivo CAD al programa de modelado 1D. Respecto a la parte experimental, el estudio concluye que cuando la dispersión de EGR es baja, los niveles de opacidad se reducen en todos los puntos de funcionamiento. Sin embargo, por encima de ciertos niveles de dispersión de EGR, la opacidad crece seriamente con diferentes pendientes según el punto de operación. El estudio permite cuantificar este límite de dispersión de EGR. La dispersión de EGR incrementa el consumo de combustible por encima del 6.9%. Respecto a la parte de modelado, el estudio concluye que cuando la distribución de EGR entre conductos medida experimentalmente es asimétrica y presenta un alto patrón de concavidad o convexidad, el modelo no predice adecuadamente la distribución del EGR. El estudio concluye que, aunque en los ensayos experimentales la tasa de EGR afecta a la dispersión de EGR, el modelo 1D no es tan sensible como para predecir esta influencia cuando la tasa de EGR está por debajo del 10%. / [CA] L'objectiu de l'estudi és doble. Per una banda, determinar l'efecte de la dispersió de la recirculació de gasos d'escapament d'alta pressió (HP EGR per les seues sigles en anglès) en les emissions d'òxids de nitrogen (NOx) i fums en motors dièsel d'automoció en operacions de funcionament constants. La investigació quantifica les emissions de NOx i fums en funció del nivell de dispersió d'EGR d'alta pressió entre cilindres. Per una altra banda, l'objectiu és explorar els límits del modelatge unidimensional (1D) per predir el moviment del flux dels gasos en la complexa situació en què aquests entren als cilindres des del col·lector d'admissió. Els experiments van ser realitzats en un banc de proves amb un motor dièsel de 1.6 litres. Per detectar la dispersió d'EGR d'alta pressió es va instal·lar un sistema de vàlvules en els conductes d'admissió de cada cilindre per mesurar el percentatge de CO2 i per tant la taxa d'EGR. De la mateixa manera es va instal·lar també un sistema de vàlvules d'escapament, cilindre a cilindre, per mesurar les emissions de NOx. A més també es va instal·lar un sensor de fums en la línia d'escapament, aigües avall de la turbina, per mesurar l'efecte de la dispersió d'EGR d'alta pressió en les emissions de fums, així com el sensor de mesura de la resta d'emissions aigües avall de la turbina. S'han estudiat 9 punts de funcionament diferents amb distintes velocitats i nivells de càrrega, per la qual cosa el mapa motor s'ha estudiat en profunditat, des de 1250 fins a 3000 rpm i entre 3 i 20 bar de pressió mitjana efectiva (BMEP per les seues sigles en anglès). La taxa d'EGR varia entre 5 i 42 %, depenent del punt de funcionament. La geometria del model reprodueix la geometria del motor dièsel d'automoció d'1.6 litres en el qual es van realitzar tots els assajos experimentals. La metodologia centrada en les ferramentes experimentals combina aparells de mesura tradicional amb un sistema de vàlvules específic que ofereixen una informació precisa quant a la concentració d'espècies tant al col·lector d'admissió com al d'escapament. L'estudi es va realitzar a emissions de NOx constants per observar l'efecte de la dispersió d'EGR en els valors d'opacitat. Quant a la metodologia centrada en les ferramentes de modelatge, les condicions de contorn i tota la informació necessària per posar en marxa el model prové dels resultats dels assajos experimentals mesurats amb els diferents sensors i aparells mencionats anteriorment, molts d'ells necessaris per ajustar el model. La part més important per estudiar la capacitat de predicció del model és el disseny del col·lector d'admissió. És necessari posar especial atenció a l'orientació dels conductes, i a l'estructura interna i la superfície per tractar de ser molt fidel a la geometria real, ja que determina la predicció de la dispersió. Esta aproximació del model quasi-tridimensional (3D) és possible gràcies a un programa específic que importa la informació necessària des d'un arxiu de disseny assistit per ordinador (CAD) al programa de modelat 1D. Respecte a la part experimental, l'estudi conclou que quan la dispersió d'EGR és baixa, els nivells d'opacitat es redueixen en tots els punts de funcionament. Tanmateix, per damunt de certs nivells de dispersió d'EGR, l'opacitat creix seriosament amb diferents pendents segons el punt d'operació. L'estudi permet quantificar aquest límit de dispersió d'EGR. A més, la dispersió d'EGR podria contribuir a incrementar el consum de combustible per damunt del 6.9%. Respecte a la part de modelatge, l'estudi conclou que quan la distribució d'EGR entre conductes mesurada experimentalment és asimètrica i presenta un alt patró de concavitat o convexitat, el model no prediu adequadament la distribució d'EGR. A més, l'estudi conclou que, tot i que en els assajos experimentals la taxa d'EGR afecta a la dispersió d'EGR, el model 1D no és tan sensible com per predir aquesta influència quan la taxa d’EGR està per baix del 10%. / [EN] The objective of the study is twofold. On the one hand, it is to determine the effect of the high pressure (HP) exhaust gas recirculation (EGR) dispersion in automotive diesel engines on NOx and smoke emissions in steady engine operation. The investigation quantifies the smoke emissions as a function of the dispersion of the HP EGR among cylinders. On the other hand, it is to explore the limits of the one-dimensional (1D) modeling to predict the movement of the flow in a complex situation as the gases get into the cylinders from the intake manifold.
The experiments are performed on a test bench with a 1.6 liter automotive diesel engine. In order to track the HP EGR dispersion in the intake pipes, a valves system to measure CO2, hence EGR rate, pipe to pipe was installed. In the same way, a valves device to measure NOx emissions cylinder to cylinder in the exhaust was installed too. Moreover a smoke meter device was installed in the exhaust line, downstream the turbine, to measure the effect of the HP EGR dispersion on smoke emissions. A probe to measure the other raw emissions was installed downstream the turbine, too. Nine different engine running conditions were studied at different speed and load, thus the engine map was widely studied, from 1250 rpm to 3000 rpm and between 3 and 20 bar of BMEP. The EGR rate variates between 5 and 42 % depending on the working operation point. The geometry of the model reproduces the geometry of a 1.6 liter diesel automotive engine where the tests were performed. It includes an HP-EGR line and the device that was installed to perform the experiments to control the dispersion.
The methodology focused on experimental tools combining traditional measuring devices with a specific valves system which offers accurate information about species concentration in both the intake and the exhaust manifolds. The study was performed at constant raw NOx emissions to observe the effect of the EGR dispersion in the opacity values. Regarding the methodology focused on modeling tools, the boundary conditions and all the necessary information to run the model comes from experimental results measured with the different sensors and devices mentioned before. Much of them were needed to adjust the model. The most important part of the modeling to study the capacity of the prediction of the EGR dispersion is the layout of the intake manifold. It is necessary put special attention to the orientation of the pipes, and the internal structure and surface trying to mimic the real geometry because it determinates the prediction of the dispersion. This approximation to quasi-three-dimensional (3D) modeling is possible thanks to a specific software that imports the necessary information from a computer-aided design (CAD) file to the 1D modeling software.
Concerning the experimental results, the study leads to conclude that when the EGR dispersion is low, the opacity presents reduced values in all operation points. However, above a certain level of EGR dispersion, the opacity increases dramatically with different slopes depending on the engine running condition. This study allows quantifying this EGR dispersion threshold. In addition, the EGR dispersion could contribute to an increase in the engine fuel consumption up to 6.9%. Regarding to the modeling part, the study concludes that when the experimental EGR distribution among pipes is asymmetric and presents high concavity or convexity spatial pattern, the model does not predict properly the EGR distribution. In addition, the study concludes that, although in the experimental tests the EGR rate affects to the EGR dispersion, the 1D model is not too sensitive to predict this influence when the EGR rate is lower than 10%. / The respondent wishes to acknowledge the financial support received by contract FPI 2015 S2 3101 of Programa de Apoyo a la Investigación y Desarrollo (PAID) from Universitat Politècnica de València (UPV). / Miguel García, J. (2021). Analysis of the high pressure EGR dispersion among cylinders in automotive diesel engines [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/161889
|
19 |
Exhaust system energy management of internal combustion enginesWijewardane, M. Anusha January 2012 (has links)
Today, the investigation of fuel economy improvements in internal combustion engines (ICEs) has become the most significant research interest among the automobile manufacturers and researchers. The scarcity of natural resources, progressively increasing oil prices, carbon dioxide taxation and stringent emission regulations all make fuel economy research relevant and compelling. The enhancement of engine performance solely using incylinder techniques is proving increasingly difficult and as a consequence the concept of exhaust energy recovery has emerged as an area of considerable interest. Three main energy recovery systems have been identified that are at various stages of investigation. Vapour power bottoming cycles and turbo-compounding devices have already been applied in commercially available marine engines and automobiles. Although the fuel economy benefits are substantial, system design implications have limited their adaptation due to the additional components and the complexity of the resulting system. In this context, thermo-electric (TE) generation systems, though still in their infancy for vehicle applications have been identified as attractive, promising and solid state candidates of low complexity. The performance of these devices is limited to the relative infancy of materials investigations and module architectures. There is great potential to be explored. The initial modelling work reported in this study shows that with current materials and construction technology, thermo-electric devices could be produced to displace the alternator of the light duty vehicles, providing the fuel economy benefits of 3.9%-4.7% for passenger cars and 7.4% for passenger buses. More efficient thermo-electric materials could increase the fuel economy significantly resulting in a substantially improved business case. The dynamic behaviour of the thermo-electric generator (TEG) applied in both, main exhaust gas stream and exhaust gas recirculation (EGR) path of light duty and heavy duty engines were studied through a series of experimental and modelling programs. The analyses of the thermo-electric generation systems have highlighted the need for advanced heat exchanger design as well as the improved materials to enhance the performance of these systems. These research requirements led to the need for a systems evaluation technique typified by hardware-in-the-loop (HIL) testing method to evaluate heat exchange and materials options. HIL methods have been used during this study to estimate both the output power and the exhaust back pressure created by the device. The work has established the feasibility of a new approach to heat exchange devices for thermo-electric systems. Based on design projections and the predicted performance of new materials, the potential to match the performance of established heat recovery methods has been demonstrated.
|
20 |
Návrh plnicího systému motoru s uvažováním recirkulace výfukových plynů / Proposal of Engine Intake System with Exhaust Gases RecirculationVojkůvka, František January 2010 (has links)
The object of the diploma thesis is to optimize vacuum function of the ejector using computional fluid dynamics, or CFD. The ejector is inserted to the intake system of the six - cylinder diesel engine to increase the pressure gradient of the exhaust gas recirculation system. The analysis of the current design solution is performed and then the ejector with the new shape affording higher vacuum effect is proposed. The introductory part is devoted to the questions of diesel engines emissions and technology to reduce emissions in the exhaust system focused on the EGR.
|
Page generated in 0.0991 seconds