1 |
Non-smooth differential delay equationsAllen, Brenda January 1997 (has links)
No description available.
|
2 |
Development of a Flexible Open Architecture Controller for a Six-Cylinder Heavy-Duty Diesel EngineMcElmurry, Robert Dennis 15 August 2014 (has links)
The goal of the present work is to develop an open architecture engine controller to operate a production model, heavy-duty diesel engine. Where OEM engine control units (ECUs) are inflexible, this controller is designed to provide the hardware and software flexibility required to facilitate dualuel combustion research. This thesis includes thorough descriptions of the hardware and software development required to interface with all engine sensors and actuators. To establish baseline control settings for the open controller, OEM ECU responses are mapped over a range of speeds and loads. This information is used to calibrate the open controller. Comparison tests considering speed, load, and emissions are performed to ensure the open controller provides a close approximation of OEM engine operation. The results of the tests confirm that the open controller provides full control of the engine with baseline settings close to those of the OEM ECU.
|
3 |
Multivariable Sliding Mode Control for Aircraft EnginesSangwian, Sirirat 13 September 2011 (has links)
No description available.
|
4 |
Modeling, Control and Optimization of theTransient Torque Response in DownsizedTurbocharged Spark Ignited EnginesFlärdh, Oscar January 2012 (has links)
Increasing demands for lower carbon dioxide emissions and fuel consumption drive technological developments for car manufacturers. One trend that has shown success for reducing fuel consumption in spark ignited engines is downsizing, where the engine size is reduced to save fuel and a turbocharger is added to maintain the power output. A drawback of this concept is the slower torque response of a turbocharged engine. Recent hardware improvements have facilitated the use of variable geometry turbochargers (VGT) for spark ignited engines, which can improve the transient torque response. This thesis addresses the transient torque response through three papers. Paper 1 presents the optimal control of the valve timing and VGT for a fast torque response. Optimal open-loop control signals are found by maximizing the torque integral for a 1-d simulation model. From the optimization it is found that keeping the ratio between exhaust and intake pressure at a constant level gives a fast torque response. This can be achieved by feedback control using vgt actuation. The optimal valve timing differs very little from a fuel consumption optimal control that uses large overlap. Evaluation on an engine test bench shows improved torque response over the whole low engine speed range. In Paper 2, model based, nonlinear feedback controllers for the exhaust pressure are presented. First, the dynamic relation between requested VGT position and exhaust pressure is modeled. This model contains an estimation of the on-engine turbine flow map. Using this model, a controller based on inverting the input-output relation is designed. Simulations and measurements on the engine show that the controller handles the strong nonlinear characteristic of the system, maintaining both stability and performance over the engine’s operating range. Paper 3 considers the dependence of the valve timing for the cylinder gas exchange process and presents a torque model. A data-based modeling approach is used to find regressors, based on valve timing and pressures, that can describe the volumetric efficiency for several engine speeds. Utilizing both 1-d simulations and measurements, a model describing scavenging is found. These two models combine to give an accurate estimation of the in-cylinder lambda, which is shown to improve the torque estimation. The models are validated on torque transients, showing good agreement with the measurements. / <p>QC 20120928</p>
|
5 |
Engine modelling for virtual mapping : development of a physics based cycle-by-cycle virtual engine that can be used for cyclic engine mapping applications, engine flow modelling, ECU calibration, real-time engine control or vehicle simulation studiesPezouvanis, Antonios January 2009 (has links)
After undergoing a study about current engine modelling and mapping approaches as well as the engine modelling requirements for different applications, a major problem found to be present is the extensive and time consuming mapping procedure that every engine has to go through so that all control parameters can be derived from experimental data. To improve this, a cycle-by-cycle modelling approach has been chosen to mathematically represent reciprocating engines starting by a complete dynamics crankshaft mechanism model which forms the base of the complete engine model. This system is modelled taking into account the possibility of a piston pin offset on the mechanism. The derived Valvetrain model is capable of representing a variable valve lift and phasing Valvetrain which can be used while modelling most modern engines. A butterfly type throttle area model is derived as well as its rate of change which is believed to be a key variable for transient engine control. In addition, an approximation throttle model is formulated aiming at real-time applications. Furthermore, the engine inertia is presented as a mathematical model able to be used for any engine. A spark ignition engine simulation (SIES) framework was developed in MATLAB SIMULINK to form the base of a complete high fidelity cycle-by-cycle simulation model with its major target to provide an environment for virtual engine mapping procedures. Some experimental measurements from an actual engine are still required to parameterise the model, which is the reason an engine mapping (EngMap) framework has been developed in LabVIEW, It is shown that all the moving engine components can be represented by a single cyclic variable which can be used for flow model development.
|
6 |
Model-based Air and Fuel Path Control of a VCR Engine / Modellbaserad luft- och bränslereglering av en VCR-motorLindell, Tobias January 2009 (has links)
<p>The objective of the work was to develop a basic control system for an advancedexperimental engine from scratch. The engine this work revolves around is a Saabvariable compression engine.A new control system is developed based on the naked engine, stripped of theoriginal control system. Experiments form the basis that the control system isbuilt upon. Controllers for throttles, intake manifold pressure for pressures lessthan ambient pressure and exhaust gas oxygen ratio are developed and validated.They were found to be satisfactory. The lambda controller is tested with severalparameter sets, and the best set is picked to be implemented in the engine. Modelsnecessary for the development and validation of the controllers are developed.These models include models for the volumetric efficiency, the pressure dynamicsof the intake manifold, the fuel injectors and wall wetting.</p>
|
7 |
Maintaining data consistency in embedded databases for vehicular systemsGustafsson, Thomas January 2004 (has links)
<p>The amount of data handled by real-time and embedded applications is increasing. This calls for data-centric approaches when designing embedded systems, where data and its metainformation (e.g., temporal correctness requirements) are stored centrally. The focus of this thesis is on efficient data management, especially maintaining data freshness and guaranteeing correct age on data.</p><p>The contributions of our research are updating algorithms and concurrency control algorithms using data similarity. The updating algorithms keep data items up-to-date and can adapt the number of updates of data items to state changes in the external environment. Further, the updating algorithms can be extended with a relevance check allowing for skipping of unnecessary calculations. The adaptability and skipping of updates have positive effects on the CPU utilization, and freed CPU resources can be reallocated to, e.g., more extensive diagnosis of the system. The proposed multiversion concurrency control algorithms guarantee calculations reading data that is correlated in time.</p><p>Performance evaluations show that updating algorithms with a relevance check give significantly better performance compared to well-established updating approaches, i.e., the applications use more fresh data and are able to complete more tasks in time. The proposed multiversion concurrency control algorithms perform better than HP2PL and OCC and can at the same time guarantee correct age on data items, which HP2PL and OCC cannot guarantee. Thus, from the perspective of the application, more precise data is used to achieve a higher data quality overall, while the number of updates is reduced.</p> / Report code: LiU-Tek-Lic-2004:67.
|
8 |
Evaluation of a statistical method to use prior information in the estimation of combustion parameters / Utvärdering av en statistisk metod för att förbättra estimering av förbränningsparametrar med hjälp av förkunskapRundin, Patrick January 2006 (has links)
<p>Ion current sensing, where information about the combustion process in an SI-engine is gained by applying a voltage over the spark gap, is currently used to detect and avoid knock and misfire. Several researchers have pointed out that information on peak pressure location and air/fuel ratio can be gained from the ion current and have suggested several ways to estimate these parameters.</p><p>Here a simplified Bayesian approach was taken to construct a lowpass-like filter or estimator that makes use of prior information to improve estimates in crucial areas. The algorithm is computationally light and could, if successful, improve estimates enough for production use.</p><p>The filter was implemented in several variants and evaluated in a number of simulated cases. It was found that the proposed filter requires a number of trade-offs between variance, bias, tracking speed and accuracy that are difficult to balance. For satisfactory estimates and trade-off balance the prior information must be more accurate than was available.</p><p>It was also found that similar a task, constructing a general Bayesian estimator, has already been tackled in the area of particle filtering and that there are promising and unexplored possibilities there. However, particle filters require computational power that will not be available to production engines for some years. </p> / <p>Vid jonströmsmätning utvinns information om förbränningsprocessen i en bensinmotor genom att en spänning läggs över gnistgapet och den resulterande strömmen mäts. Jonströmsmätning används idag för knack- och feltändningsdetektion. Flera forskare har påpekat att det finns än mer information i jonströmmen, bl.a. om bränsleblandningen och cylindertrycket och har även föreslagit metoder för att utvinna och använda den informationen för skattning av dessa parametrar.</p><p>Här presenteras en förenklad Bayesisk metod i form av en lågpassfilter-liknande skattare som använder förkunskap till att förbättra estimat på relevanta områden. Algoritmen är beräkningsmässigt lätt och kan, om den är framgångsrik, leverera skattningar av förbränningsparametrar som är tillräckligt bra för att användas för sluten styrning av en bensinmotor.</p><p>Skattaren, eller filtret, implementerades i flera varianter och utvärderades i ett antal simulerade fall. Resultaten visade på att flera svåra avvägningar måste göras mellan förbättring i varians, avvikelse och följning eftersom förbättring i den ena ledde till försämring i de andra. För att göra dessa avvägningar och få goda skattningar krävs bättre förhandskunskap och mätdata än vad som var tillgängligt.</p><p>Bayesisk skattning är ett stort befintligt område inom statistik och signalbehandling och den mest generella skattaren är partikelfiltret som har många intressanta tillämpningar och möjligheter. De har hittills inte använts inom skattning av förbränningsparametrar och har således go potential för framtida utveckling. De är dock beräkningsmässigt tunga och kräver beräkningsresurser utöver vad som är tillgängliga i ett motorstyrsystem idag.</p>
|
9 |
Control of HCCI by aid of Variable Valve Timings with Specialization in Usage of a Non-Linear Quasi-Static CompensationAgrell, Fredrik January 2006 (has links)
This doctoral thesis is about controlling the combustion timing of the combustion concept Homogeneous Charge Compression Ignition, HCCI, by means of variable valve timings. The HCCI research usually is regarded to have started in Japan during the later part of the 1970´s. The world of HCCI has since grown and HCCI is of today researched worldwide. Of particular interest from a Swedish point of view is that Lund Institute of Technology has emerged as one of the world leading HCCI laboratories. The idea with HCCI is to combine the Otto and Diesel engine. As in an Otto engine the charge is premixed but as in a Diesel engine the operation is unthrottled and the compression heat causes the ignition. The combustion that follows the ignition takes place homogeneously and overall lean. The result is ultra low NOx and particulate emissions combined with high total efficiency. A difficulty with the HCCI-concept is that it only works in a narrow area and that there is no direct way to control the Start Of Combustion, SOC. Out of this follows that timing/phasing of the combustion is one of the main difficulties with HCCI combustion concepts. This is particularly emphasized during transient operation and calls for feedback control of the combustion timing. This work investigates one method, the variable valve timing, to achieve feedback control of the combustion phasing. From the work it can be concluded that the variable valve timing can control the combustion phasing during engine transients. In order to improve the performance a non-linear compensation from ignition delay to valve timings has been suggested, incorporated in a control structure and tested in engine test. The engine test has been performed in a single cylinder engine based on a Scania truck engine. The speed range from 500 to 1750 rpm and the load range 1.26 and 10.5 bar of netIMEP has been covered with fair transient performance. / QC 20100629
|
10 |
Adaptiv katalysatormodell för reglering / Adaptive Catalyst Model for ControlSunnegårdh, Erik January 2002 (has links)
This master’s thesis describes the development of a model of the catalystsystem aiming at control by an MPC. A well functioning model, which is suitable in control purpose, is important while emission legislation become more and more hard to fulfill for the car manufacturers. Much research has been done in the field of physical modeling of the system, but in this work a linear adaptive time discrete ARX-model is developed and validated. The systems tendency to change its dynamic during usage implies that the model must be adaptive. The developed model proved to be well functioning and shows promising conditions for the MPC design. The system and the model are analyzed in the time- and frequency domains and the model is both implemented and validated in a Saab 9-5. The work has been performed both at Saab Automobile Powertrain AB in Södertälje and in Vehicular Systems Dept. of Electrical Engineering at Linköpings University.
|
Page generated in 0.0929 seconds