41 |
Improved truck engine control for crane driving : - Focusing on fuel consumption / Förbättrad lastbilsmotorstyrning vid krankörning : - Med fokus på bränsleförbrukningSvensson, Martin January 2008 (has links)
Due to increased demands on fuel economy the question of a more intelligent engine control for driving a truck-mounted crane has been raised. The aim of this thesis is to develop a new engine control for crane driving. The primary concern for the new engine control is fuel economy, but other factors, such as driver environment and drivability, have been taken into consideration as well. A literature study investigating engine control in construction machines has also been carried out and the results are presented in this report. Due to the fact that the hydraulic control system as well as the diesel engine control system is designed by the same construction machine manufacturer, more complex control strategies are utilized in these applications. In order to test the new control strategy a full-scale test has been carried out on a Scania truck with a crane from Hiab. The results point towards lower fuel consumption, better driver experience and lower noise levels. Some of the control features of the new control are suggested to be placed in the crane, and some in the truck. Only a small expansion of the communication between truck and crane would be necessary in order for the new control strategy to work. The experiences from the literature study point on several features utilized in construction machines that could be implemented in the crane control of the future. / På grund av ökade krav på minskad bränsleförbrukning har frågan om en förbättrad motorstyrning vid krankörning av lastbilsmonterade kranar blivit aktuell. Målet för detta examensarbete är att utveckla en ny motorstyrning anpassad för krankörning. I första hand syftar den nya motorstyrningen till att minska bränsleförbrukningen, men även andra faktorer såsom förarmiljö och körbarhet har tagits hänsyn till. En litteraturstudie om motorstyrning i hydrauliska grävmaskiner och andra hydrauliska maskiner har också utförts och resultatet finns presenterat i denna rapport. Eftersom det hydrauliska styrsystemet såväl som dieselmotorstyrsystemet är sammansatt hos en och samma tillverkare används mer komplicerade styralgoritmer i dessa tillämpningar. För att testa den nyutvecklade motorstyrningen har fullskaletest utförts på en Scanialastbil utrustad med en kran från Hiab. Resultaten pekar på lägre bränsleförbrukning, bättre förarupplevelse och lägre ljudnivå. Somliga av funktionerna i den nya styrningen föreslås placeras i lastbilen och andra i kranen. Bara en mycket liten utvidgning av kommunikationen mellan kran och lastbil skulle behövas för att denna styralgoritm skulle fungera. Lärdomarna ifrån litteraturstudien visar på att flera av de styrfunktioner som används ibland annat grävskopor skulle kunna komma till nytta i motor- och kran styrningen i en lastbilsmonterad kran i framtiden.
|
42 |
Electrification of Diesel-Based Powertrains for Heavy VehiclesTyler A Swedes (11153853) 22 July 2021 (has links)
<div> In recent decades as environmental concerns and the cost and availability of fossil fuels have become more pressing issues, the need to extract more work from each drop of fuel has increased accordingly. Electrification has been identified as a way to address these issues in vehicles powered by internal combustion engines, as it allows existing engines to be operated more efficiently, reducing overall fuel consumption. Two applications of electrification are discussed in the work presented: a series-electric hybrid powertrain from an on-road class 8 truck, and an electrically supercharged diesel engine for use in the series hybrid power system of a wheel loader.</div><div> </div><div> The first application is an experimental powertrain developed by a small start-up company for use in highway trucks. The work presented in this thesis shows test results from routes along (1) Interstate 75 between Florence, KY, and Lexington, KY, and (2) Interstates 74 and 70 east of Indianapolis, during which tests the startup collected power flow data from the vehicle's motor, generator, and battery, and three-dimensional position data from a GPS system. Based on these data, it was determined that the engine-driven generator provided an average of 15% more propulsive energy than required due to electrical losses in the drivetrain. Some of these losses occured in the power electronics, which are shown to be 82% - 92% efficient depending on power flow direction, but the battery showed significant signs of wear, accounting for the remainder of these electrical losses. Overall, most of the system's fuel savings came from its regenerative braking capability, which recaptured between 3% and 12% of the total drive energy output. Routes with significant grade changes maximize this energy recapture percentage, but it is shown minimizing drag and rolling resistance with a more modern truck and trailer could further increase this energy capture to between 8% and 18%.</div><div> </div><div> In the second application, an electrified air handling system is added to a 4.5L engine, allowing it to replace the 6.8L engine in John Deere's 644K hybrid wheel loader. Most of the fuel savings arise from downsizing the engine, so in this case an electrically driven supercharger (eBooster) allows the engine to meet the peak torque requirements of the larger, original engine. In this thesis, a control-oriented nonlinear state space model of the modified 4.5L engine is presented and linearized for use in designing a robust, multi-input multi-output (MIMO) controller which commands the engine's fueling rate, eBooster, eBooster bypass valve, exhaust gas recirculation (EGR) valve, and exhaust throttle. This integrated control strategy will ultimately allow superior tracking of engine speed, EGR fraction, and air-fuel ratio (AFR) targets, but these performance gains over independent single-input single-output control loops for each component demand linear models that accurately represent the engine's gas exchange dynamics. To address this, a physics-based model is presented and linearized to simulate pressures, temperatures, and shaft speeds based on sub-models for exhaust temperature, cylinder charge flow, valve flow, compressor flow, turbine flow, compressor power, and turbine power. The nonlinear model matches the truth reference engine model over the 1200 rpm - 2000 rpm and 100 Nm - 500 Nm speed and torque envelope of interest within 10% in steady state and 20% in transient conditions. Two linear models represent the full engine's dynamics over this speed and torque range, and these models match the truth reference model within 20% in the middle of the operating envelope. However, specifically at (1) low load for any speed and (2) high load at high speed, the linear models diverge from the nonlinear and truth reference models due to nonlinear engine dynamics lost in linearization. Nevertheless, these discrepancies at the edges of the engine's operating envelope are acceptable for control design, and if greater accuracy is needed, additional linear models can be generated to capture the engine's dynamics in this region.</div>
|
43 |
Modelling and Optimal Control of a Variable Nozzle Turbine in an SI Engine for Maximum PerformanceFransson Brunberg, Emil, Bolin, Karl January 2022 (has links)
The ever increasing demands on today's engine performance and emissions control is forcing the automotive industry to make use of innovative solutions. One of these is to apply the technology of VNT turbos on commercial petrol vehicles. When using a VNT turbo, the aspect ratio of the turbine can be altered while driving to suit the current operating window. In order to actually gain performance while using a VNT, the vanes have to be properly controlled using a suitable control strategy. In this project, direct collocation have been utilized through the usage of YOP which is an adaptation of CasADi in MATLAB to solve non-linear optimization problems. Comprehensive models of the turbocharger and the cylinders have been built and validated to properly represent a VEP4 LP engine from AUROBAY. The models are implemented in YOP to create and simulate different OCPs using the turbo speed as state and position of the vanes as control signal. With this model in YOP together with the air mass flow per second as reference, a good reference following together with decent values for relevant parameters can be accomplished. Other objective functions such as minimum time and maximal volumetric efficiency are also investigated in the project which yield likewise results. From the results it can be concluded that this type of model and control strategy can be used with success when studying optimal control of a VNT turbo.
|
44 |
Experimental Investigation of Octane Requirement Relaxation in a Turbocharged Spark-Ignition EngineBaranski, Jacob A. 30 August 2013 (has links)
No description available.
|
45 |
An Improved Model-Based Methodology for Calibration of an Alternative Fueled EngineEverett, Ryan Vincent 15 December 2011 (has links)
No description available.
|
46 |
An analytical approach to real-time linearization of a gas turbine engine modelChung, Gi Yun 22 January 2014 (has links)
A recent development in the design of control system for a jet engine is to use a suitable, fast and accurate model running on board. Development of linear models is particularly important as most engine control designs are based on linear control theory. Engine control performance can be significantly improved by increasing the accuracy of the developed model. Current state-of-the-art is to use piecewise linear models at selected equilibrium conditions for the development of set point controllers, followed by scheduling of resulting controller gains as a function of one or more of the system states. However, arriving at an effective gain scheduler that can accommodate fast transients covering a wide range of operating points can become quite complex and involved, thus resulting in a sacrifice on controller performance for its simplicity.
This thesis presents a methodology for developing a control oriented analytical linear model of a jet engine at both equilibrium and off-equilibrium conditions. This scheme requires a nonlinear engine model to run onboard in real time. The off-equilibrium analytical linear model provides improved accuracy and flexibility over the commonly used piecewise linear models developed using numerical perturbations. Linear coefficients are obtained by evaluating, at current conditions, analytical expressions which result from differentiation of simplified nonlinear expressions. Residualization of the fast dynamics states are utilized since the fast dynamics are typically outside of the primary control bandwidth. Analytical expressions based on the physics of the aerothermodynamic processes of a gas turbine engine facilitate a systematic approach to the analysis and synthesis of model based controllers. In addition, the use of analytical expressions reduces the computational effort, enabling linearization in real time at both equilibrium and off-equilibrium conditions for a more accurate capture of system dynamics during aggressive transient maneuvers.
The methodology is formulated and applied to a separate flow twin-spool turbofan engine model in the Numerical Propulsion System Simulation (NPSS) platform. The fidelity of linear model is examined by validating against a detailed nonlinear engine model using time domain response, the normalized additive uncertainty and the nu-gap metric. The effects of each simplifying assumptions, which are crucial to the linear model development, on the fidelity of the linear model are analyzed in detail. A case study is performed to investigate the case when the current state (including both slow and fast states) of the system is not readily available from the nonlinear simulation model. Also, a simple model based control is used to illustrate benefits of using the proposed modeling approach.
|
47 |
Entwicklung und Abstimmung eines Momentenmodells für eine Otto-DI-MotorsteuerungPietzsch, Albrecht 25 January 2018 (has links) (PDF)
Die Zulieferindustrie im Automobilbereich sieht sich heutzutage hochkomplexen Systemen bei der Entwicklung von Verbrennungsmotoren gegenüber. Applikationssteuergeräte mit passendem Datenstand werden selten von Fahrzeugherstellern an Dritte für die Entwicklung am Verbrennungsmotor bereitgestellt. Eine Alternative bieten Prototypensteuergeräte mit individuellen Softwarepaketen, die in ihrer Funktionalität auf die Bedürfnisse der Entwicklungsingenieure zugeschnitten sind. Die FlexECU von ETAS ist ein gutes Beispiel für solch ein offenes, kostengünstiges und seriennahes Prototypensteuergerät.
Hauptbestandteil dieser Arbeit ist die Entwicklung und Integration eines Momentemodells
in eine vorhandene Motorsteuerungssoftware sowie die Applikation dieses Modells am
Motorprüfstand. Die Motivation für die Erweiterung der jetzigen Motorsteuerungssoftware um das Momentemodell ist, den Entwicklungsingenieuren ein möglichst seriennahes Steuergeräteumfeld bei der Erarbeitung innovativer verbrauchs- und schadstoffoptimierter Konzepte für den Verbrennungsmotor bereitzustellen.
Bei der Evaluation wird gezeigt, dass die Integration und die Funktion des Momentenmodells grundsätzlich gelungen ist. Diese Arbeit bildet den Grundstein für eine umfangreiche Entwicklung, die noch einige Zeit in Anspruch nehmen wird, bis eine voll umfängliche abgesicherte Software geschaffen ist. / Nowadays, the automotive supplier industry is confronted with highly complex systems for the development of internal combustion engines. Vehicle manufacturers very rarely provide third party developers with their engine control units with calibration access and matching description and data files for internal combustion engines. An alternative are prototype control units with individual software packages, which in their functionality are adapted to the needs of development engineers. One example for such an open, cost-effective and field-proven control system development platform is FlexECU from ETAS.
The essential part of this thesis is the development and integration of a torque-based system structure for an existing engine management system and the calibration of this model on an engine test bench. The motivation for this improvement is to provide development engineers with a control unit environment as close to serial as possible for the development of consumption- and emission-optimized concepts for internal combustion engines.
The evaluation shows that integration as well as functionality of the torque-based system structure has generally been achieved. This thesis lays the foundations for an extensive development of this system – although the creation of a fully verified and validated software will still take some time.
|
48 |
Entwicklung und Abstimmung eines Momentenmodells für eine Otto-DI-MotorsteuerungPietzsch, Albrecht 18 December 2017 (has links)
Die Zulieferindustrie im Automobilbereich sieht sich heutzutage hochkomplexen Systemen bei der Entwicklung von Verbrennungsmotoren gegenüber. Applikationssteuergeräte mit passendem Datenstand werden selten von Fahrzeugherstellern an Dritte für die Entwicklung am Verbrennungsmotor bereitgestellt. Eine Alternative bieten Prototypensteuergeräte mit individuellen Softwarepaketen, die in ihrer Funktionalität auf die Bedürfnisse der Entwicklungsingenieure zugeschnitten sind. Die FlexECU von ETAS ist ein gutes Beispiel für solch ein offenes, kostengünstiges und seriennahes Prototypensteuergerät.
Hauptbestandteil dieser Arbeit ist die Entwicklung und Integration eines Momentemodells
in eine vorhandene Motorsteuerungssoftware sowie die Applikation dieses Modells am
Motorprüfstand. Die Motivation für die Erweiterung der jetzigen Motorsteuerungssoftware um das Momentemodell ist, den Entwicklungsingenieuren ein möglichst seriennahes Steuergeräteumfeld bei der Erarbeitung innovativer verbrauchs- und schadstoffoptimierter Konzepte für den Verbrennungsmotor bereitzustellen.
Bei der Evaluation wird gezeigt, dass die Integration und die Funktion des Momentenmodells grundsätzlich gelungen ist. Diese Arbeit bildet den Grundstein für eine umfangreiche Entwicklung, die noch einige Zeit in Anspruch nehmen wird, bis eine voll umfängliche abgesicherte Software geschaffen ist.:Abkürzungsverzeichnis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I
Verzeichnis der Formelzeichen und Symbole . . . . . . . . . . . . . . . II
Variablenverzeichnis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .V
Abbildungsverzeichnis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VII
Tabellenverzeichnis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .VIII
1. Einleitung 1
1.1. Aufgabenstellung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
1.2. Zielsetzung und Aufbau der Arbeit . . . . . . . . . . . . . . . . . . .1
2. Stand der Technik 4
2.1. Steuerung und Regelung von Ottomotoren . . . . . . . . . . . . 4
2.2. Architektur Motorsteuerungssoftware . . . . . . . . . . . . . . . . 7
2.3. Das Momentenmodell . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
3. Theoretische Grundlagen 15
3.1. Innermotorische Drehmomentenerzeugung . . . . . . . . . . .15
3.2. Eingriffsmöglichkeiten und deren Geschwindigkeit . . . . . .18
4. Modellierung des Momentenmodells 20
4.1. Entwicklungsumgebung . . . . . . . . . . . . . . . . . . . . . . . . . .20
4.2. Modellbildung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
5. Versuch 34
5.1. Versuchsplanung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.2. Versuchsträger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37
5.2.1. ETAS FlexECU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2.2. Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.2.3. Versuchsmotor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2.4. Motorprüfstand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40
5.3. Applikationssoftware . . . . . . . . . . . . . . . . . . . . . . . . . . . .41
5.3.1. ETAS INCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42
5.3.2. ETAS MDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.3.3. ETAS ASCMO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43
6. Vorstellung der Ergebnisse . . . . . . . . . . . . . . . . . . . . . . . . .45
6.1. Ergebnisse der Applikation des Momentemodells . . . . . . 45
6.2. Evaluierung der Drehmomentumsetzung des
Momentenmodells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.3. Evaluierung der Untersysteme des Momentenmodells . . 62
7. Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71
Literatur- und Quellenverzeichnis . . . . . . . . . . . . . . . . . . . . . 75
Eidesstattliche Erklärung . . . . . . . . . . . . . . . . . . . . . . . . . . . .76
Anlagenverzeichnis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 / Nowadays, the automotive supplier industry is confronted with highly complex systems for the development of internal combustion engines. Vehicle manufacturers very rarely provide third party developers with their engine control units with calibration access and matching description and data files for internal combustion engines. An alternative are prototype control units with individual software packages, which in their functionality are adapted to the needs of development engineers. One example for such an open, cost-effective and field-proven control system development platform is FlexECU from ETAS.
The essential part of this thesis is the development and integration of a torque-based system structure for an existing engine management system and the calibration of this model on an engine test bench. The motivation for this improvement is to provide development engineers with a control unit environment as close to serial as possible for the development of consumption- and emission-optimized concepts for internal combustion engines.
The evaluation shows that integration as well as functionality of the torque-based system structure has generally been achieved. This thesis lays the foundations for an extensive development of this system – although the creation of a fully verified and validated software will still take some time.:Abkürzungsverzeichnis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I
Verzeichnis der Formelzeichen und Symbole . . . . . . . . . . . . . . . II
Variablenverzeichnis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .V
Abbildungsverzeichnis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VII
Tabellenverzeichnis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .VIII
1. Einleitung 1
1.1. Aufgabenstellung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
1.2. Zielsetzung und Aufbau der Arbeit . . . . . . . . . . . . . . . . . . .1
2. Stand der Technik 4
2.1. Steuerung und Regelung von Ottomotoren . . . . . . . . . . . . 4
2.2. Architektur Motorsteuerungssoftware . . . . . . . . . . . . . . . . 7
2.3. Das Momentenmodell . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
3. Theoretische Grundlagen 15
3.1. Innermotorische Drehmomentenerzeugung . . . . . . . . . . .15
3.2. Eingriffsmöglichkeiten und deren Geschwindigkeit . . . . . .18
4. Modellierung des Momentenmodells 20
4.1. Entwicklungsumgebung . . . . . . . . . . . . . . . . . . . . . . . . . .20
4.2. Modellbildung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
5. Versuch 34
5.1. Versuchsplanung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.2. Versuchsträger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37
5.2.1. ETAS FlexECU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2.2. Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.2.3. Versuchsmotor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2.4. Motorprüfstand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40
5.3. Applikationssoftware . . . . . . . . . . . . . . . . . . . . . . . . . . . .41
5.3.1. ETAS INCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42
5.3.2. ETAS MDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.3.3. ETAS ASCMO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43
6. Vorstellung der Ergebnisse . . . . . . . . . . . . . . . . . . . . . . . . .45
6.1. Ergebnisse der Applikation des Momentemodells . . . . . . 45
6.2. Evaluierung der Drehmomentumsetzung des
Momentenmodells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.3. Evaluierung der Untersysteme des Momentenmodells . . 62
7. Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71
Literatur- und Quellenverzeichnis . . . . . . . . . . . . . . . . . . . . . 75
Eidesstattliche Erklärung . . . . . . . . . . . . . . . . . . . . . . . . . . . .76
Anlagenverzeichnis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
|
49 |
Heavy-Duty Spark-Ignited Single Cylinder Engine Fueling System / Bränslesystem för encylindrig motorSharad Kittur, Rohan January 2018 (has links)
Forskning inom motorutveckling bedrivs för att möta kommande emissionskrav och samtidigt minska bränsleförbrukningen. Kommande förbud mot dieseldrivna fordon planeras i flera städer runt om i världen. Alternativa bränsle som exempelvis naturgas ses som en lovande ersättning även för tunga fordon. Metan som är huvudkomponenten av naturgas har en fördelaktigt förhållande mellan väte och kol vilket gör den attraktiv för CO2-reducering. Hur som helst, bränslets låga cetantal och den höga aktiveringsenergin som krävs för att tända naturgas förutsätter tändstiftsantändning.En fördel av att använda en encylindrig motor inom forskning är möjligheten att studera fenomen utan negativa gasväxlingsinteraktioner från intilliggande cylindrar. Jämfört med en fullmotor möjliggörs även ett snabbare utbyte av motordelar samt lägre bränsleförbrukning.Fokus för detta examensarbete var genomförandet av ett flexibelt bränslesystem för en tändstiftsantänd encylindrig motor. Motorn är en tändstiftsantänd Scania 9 liters som modifieras för encylinder körning. Flexibilitet som t.ex. laddningshomogenitet, selektiv fyllning av inloppsporter och förberedelser för direktinsprutning av flytande bränsle realiserades. För enkel användning är motorn styrd av en eftermarknadsmotorstyrenhet som använder ett användarvänligt grafiskt gränssnitt för ändring av driftsparametrar. Säkerhetshänsyn vid blandning av gasformiga bränsle och luft långt innan inloppsporterna har implementerats. / Most of the fundamental research in internal combustion engines is driven by the ever-increasing stringency of emissions regulations along with the need for increased fuel economy. The proposed ban on diesel vehicles in several cities around the world combined with extensive availability, has made natural gas a promising substitute even for heavy-duty applications. The high hydrogen-to-carbon ratio of methane, the major component of natural gas, makes it attractive from an emissions reduction perspective. CO2 emissions from natural gas combustion are particularly low. However, the low cetane number and high activation energy required to ignite natural gas, requires spark-ignition.In a research setting, it is often advantageous to have a single cylinder engine. The main benefit is the ability to study phenomena without adverse interactions which multi-cylinder operation may cause. This is especially important for gas-exchange studies. Quicker replacement of parts and lower fuel consumption are secondary benefits.The focus of this thesis was the implementation of a flexible fueling system for a single cylinder spark-ignited engine. The engine is a Scania 9-liter spark-ignited engine modified for single cylinder operation. Flexibility in terms of charge homogeneity, selective intake port filling and provisions for liquid fuel direct injection have been provided. For ease of use, the engine is controlled by an aftermarket engine control unit with a graphical user interface for configuration. Safety considerations when mixing gaseous fuels and air well upstream of the intake ports have been implemented.
|
50 |
Robust Control of Uncertain Input-Delayed Sample Data Systems through Optimization of a Robustness BoundKratz, Jonathan L. 22 May 2015 (has links)
No description available.
|
Page generated in 0.0753 seconds