• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 24
  • 24
  • 7
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Exon and intron detection in human genomic DNA

Miller, James Keith, January 2005 (has links) (PDF)
Thesis (Ph.D.)--Washington State University. / Includes bibliographical references.
2

Investigation of a transposon-assisted exon trapping system for Arabidopsis

Chu, Hung, January 2010 (has links)
Thesis (M. Phil.)--University of Hong Kong, 2010. / Includes bibliographical references (leaves 120-131). Also available in print.
3

Prediction of protein coding regions in unannotated DNA sequences using an inhomogeneous Markov model of genetic information encoding

McIninch, James David 12 1900 (has links)
No description available.
4

Investigation of a transposon-assisted exon trapping system for Arabidopsis

Chu, Hung, 朱紅 January 2010 (has links)
published_or_final_version / Biological Sciences / Master / Master of Philosophy
5

Low detection of exon skipping in mouse genes orthologous to human genes on chromosome 22.

Chern, Tzu-Ming January 2002 (has links)
<p>Alternative RNA splicing is one of the leading mechanisms contributing towards transcript and protein diversity. Several alternative splicing surveys have confirmed the frequent occurrence of exon skipping in human genes. However, the occurrence of exon skipping in mouse genes has not yet been extensively examined. Recent improvements in mouse genome sequencing have permitted the current study to explore the occurrence of exon skipping in mouse genes orthologous to human genes on chromosome 22. A low number (5/72 multi-exon genes) of mouse exon-skipped genes were captured through alignments of mouse ESTs to mouse genomic contigs. Exon-skipping events in two mouse exon-skipped genes (GNB1L, SMARCB1) appear to affect biological processes such as electron and protein transport. All mouse, skipped exons were observed to have ubiquitous tissue expression. Comparison of our mouse exon-skipping events to previously detected human exon-skipping events on chromosome 22 by Hide et al.2001, has revealed that mouse and human exon-skipping events were never observed together within an orthologous gene-pair. Although the transcript identity between mouse and human orthologous transcripts were high (greater than 80% sequence identity), the exon order in these gene-pairs may be different between mouse and human orthologous genes.<br /> <br /> Main factors contributing towards the low detection of mouse exon-skipping events include the lack of mouse transcripts matching to mouse genomic sequences and the under-prediction of mouse exons. These factors resulted in a large number (112/269) of mouse transcripts lacking matches to mouse genomic contigs and nearly half (12/25) of the mouse multi-exon genes, which have matching Ensembl transcript identifiers, have under-predicted exons. The low frequency of mouse exon skipping on chromosome 22 cannot be extrapolated to represent a genome-wide estimate due to the small number of observed mouse exon-skipping events. However, when compared to a higher estimate (52/347) of exon skipping in human genes for chromosome 22 produced under similar conditions by Hide et al.2001, it is possible that our mouse exon-skipping frequency may be lower than the human frequency. Our hypothesis contradicts with a previous study by Brett et al.2002, in which the authors claim that mouse and human alternative splicing is comparable. Our conclusion that the mouse exon-skipping frequency may be lower than the human estimate remains to be tested with a larger mouse multi-exon gene set. However, the mouse exon-skipping frequency may represent the highest estimate that can be obtained given that the current number (87) of mouse genes orthologous to chromosome 22 in Ensembl (v1 30th Jan. 2002) does not deviate significantly from our total number (72) of mouse multi-exon genes. The quality of the current mouse genomic data is higher than the one utilized in this study. The capture of mouse exon-skipping events may increase as the quality and quantity of mouse genomic and transcript sequences improves.</p>
6

Low detection of exon skipping in mouse genes orthologous to human genes on chromosome 22.

Chern, Tzu-Ming January 2002 (has links)
<p>Alternative RNA splicing is one of the leading mechanisms contributing towards transcript and protein diversity. Several alternative splicing surveys have confirmed the frequent occurrence of exon skipping in human genes. However, the occurrence of exon skipping in mouse genes has not yet been extensively examined. Recent improvements in mouse genome sequencing have permitted the current study to explore the occurrence of exon skipping in mouse genes orthologous to human genes on chromosome 22. A low number (5/72 multi-exon genes) of mouse exon-skipped genes were captured through alignments of mouse ESTs to mouse genomic contigs. Exon-skipping events in two mouse exon-skipped genes (GNB1L, SMARCB1) appear to affect biological processes such as electron and protein transport. All mouse, skipped exons were observed to have ubiquitous tissue expression. Comparison of our mouse exon-skipping events to previously detected human exon-skipping events on chromosome 22 by Hide et al.2001, has revealed that mouse and human exon-skipping events were never observed together within an orthologous gene-pair. Although the transcript identity between mouse and human orthologous transcripts were high (greater than 80% sequence identity), the exon order in these gene-pairs may be different between mouse and human orthologous genes.<br /> <br /> Main factors contributing towards the low detection of mouse exon-skipping events include the lack of mouse transcripts matching to mouse genomic sequences and the under-prediction of mouse exons. These factors resulted in a large number (112/269) of mouse transcripts lacking matches to mouse genomic contigs and nearly half (12/25) of the mouse multi-exon genes, which have matching Ensembl transcript identifiers, have under-predicted exons. The low frequency of mouse exon skipping on chromosome 22 cannot be extrapolated to represent a genome-wide estimate due to the small number of observed mouse exon-skipping events. However, when compared to a higher estimate (52/347) of exon skipping in human genes for chromosome 22 produced under similar conditions by Hide et al.2001, it is possible that our mouse exon-skipping frequency may be lower than the human frequency. Our hypothesis contradicts with a previous study by Brett et al.2002, in which the authors claim that mouse and human alternative splicing is comparable. Our conclusion that the mouse exon-skipping frequency may be lower than the human estimate remains to be tested with a larger mouse multi-exon gene set. However, the mouse exon-skipping frequency may represent the highest estimate that can be obtained given that the current number (87) of mouse genes orthologous to chromosome 22 in Ensembl (v1 30th Jan. 2002) does not deviate significantly from our total number (72) of mouse multi-exon genes. The quality of the current mouse genomic data is higher than the one utilized in this study. The capture of mouse exon-skipping events may increase as the quality and quantity of mouse genomic and transcript sequences improves.</p>
7

Determinants that govern alternative splicing of the large intron of minute virus of mice p4-generated PRE-mRNA

Choi, Eun-Young, Pintel, David J. January 2008 (has links)
Title from PDF of title page (University of Missouri--Columbia, viewed on Feb 25, 2010). The entire thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file; a non-technical public abstract appears in the public.pdf file. Dissertation advisor: David J. Pintel. Vita. Includes bibliographical references.
8

Treatment of Duschenne Muscular Dystrophy with exon skipping antisense oligonucleotides using novel polyethylenimine carriers /

Sirsi, Shashank Ramesh. Lutz, Gordon J. January 2007 (has links)
Thesis (Ph. D.)--Drexel University, 2007. / Includes abstract and vita. Includes bibliographical references (leaves 94-110).
9

Low detection of exon skipping in mouse genes orthologous to human genes on chromosome 22

Chern, Tzu-Ming January 2002 (has links)
Magister Scientiae - MSc (Biochemistry) / Alternative RNA splicing is one of the leading mechanisms contributing towards transcript and protein diversity. Several alternative splicing surveys have confirmed the frequent occurrence of exon skipping in human genes. However, the occurrence of exon skipping in mouse genes has not yet been extensively examined. Recent improvements in mouse genome sequencing have permitted the current study to explore the occurrence of exon skipping in mouse genes orthologous to human genes on chromosome 22. A low number (5/72 multi-exon genes) of mouse exon-skipped genes were captured through alignments of mouse ESTs to mouse genomic contigs. Exon-skipping events in two mouse exon-skipped genes (GNB1L, SMARCB1) appear to affect biological processes such as electron and protein transport. All mouse, skipped exons were observed to have ubiquitous tissue expression. Comparison of our mouse exon-skipping events to previously detected human exon-skipping events on chromosome 22 by Hide et al.2001, has revealed that mouse and human exon-skipping events were never observed together within an orthologous gene-pair. Although the transcript identity between mouse and human orthologous transcripts were high (greater than 80% sequence identity), the exon order in these gene-pairs may be different between mouse and human orthologous genes. Main factors contributing towards the low detection of mouse exon-skipping events include the lack of mouse transcripts matching to mouse genomic sequences and the under-prediction of mouse exons. These factors resulted in a large number (112/269) of mouse transcripts lacking matches to mouse genomic contigs and nearly half (12/25) of the mouse multi-exon genes, which have matching Ensembl transcript identifiers, have under-predicted exons. The low frequency of mouse exon skipping on chromosome 22 cannot be extrapolated to represent a genome-wide estimate due to the small number of observed mouse exon-skipping events. However, when compared to a higher estimate (52/347) of exon skipping in human genes for chromosome 22 produced under similar conditions by Hide et al.2001, it is possible that our mouse exon-skipping frequency may be lower than the human frequency. Our hypothesis contradicts with a previous study by Brett et al.2002, in which the authors claim that mouse and human alternative splicing is comparable. Our conclusion that the mouse exon-skipping frequency may be lower than the human estimate remains to be tested with a larger mouse multi-exon gene set. However, the mouse exon-skipping frequency may represent the highest estimate that can be obtained given that the current number (87) of mouse genes orthologous to chromosome 22 in Ensembl (v1 30th Jan. 2002) does not deviate significantly from our total number (72) of mouse multi-exon genes. The quality of the current mouse genomic data is higher than the one utilized in this study. The capture of mouse exon-skipping events may increase as the quality and quantity of mouse genomic and transcript sequences improves. / South Africa
10

Exon/Intron Discrimination Using the Finite Induction Pattern Matching Technique

Taylor, Pamela A., 1941- 12 1900 (has links)
DNA sequence analysis involves precise discrimination of two of the sequence's most important components: exons and introns. Exons encode the proteins that are responsible for almost all the functions in a living organism. Introns interrupt the sequence coding for a protein and must be removed from primary RNA transcripts before translation to protein can occur. A pattern recognition technique called Finite Induction (FI) is utilized to study the language of exons and introns. FI is especially suited for analyzing and classifying large amounts of data representing sequences of interest. It requires no biological information and employs no statistical functions. Finite Induction is applied to the exon and intron components of DNA by building a collection of rules based upon what it finds in the sequences it examines. It then attempts to match the known rule patterns with new rules formed as a result of analyzing a new sequence. A high number of matches predict a probable close relationship between the two sequences; a low number of matches signifies a large amount of difference between the two. This research demonstrates FI to be a viable tool for measurement when known patterns are available for the formation of rule sets.

Page generated in 0.0486 seconds