• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 94
  • 20
  • 7
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 166
  • 49
  • 35
  • 34
  • 32
  • 26
  • 25
  • 23
  • 20
  • 16
  • 15
  • 15
  • 15
  • 14
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

Design of a Pneumatic Artificial Muscle for Powered Lower Limb Prostheses

Murillo, Jaime 01 May 2013 (has links)
Ideal prostheses are defined as artificial limbs that would permit physically impaired individuals freedom of movement and independence rather than a life of disability and dependence. Current lower limb prostheses range from a single mechanical revolute joint to advanced microprocessor controlled mechanisms. Despite the advancement in technology and medicine, current lower limb prostheses are still lacking an actuation element, which prohibits patients from regaining their original mobility and improving their quality of life. This thesis aims to design and test a Pneumatic Artificial Muscle that would actuate lower limb prostheses. This would offer patients the ability to ascend and descend stairs as well as standing up from a sitting position. A comprehensive study of knee biomechanics is first accomplished to characterize the actuation requirement, and subsequently a Pneumatic Artificial Muscle design is proposed. A novel design of muscle end fixtures is presented which would allow the muscle to operate at a gage pressure surpassing 2.76 MPa (i.e. 400 psi) and yield a muscle force that is at least 3 times greater than that produced by any existing equivalent Pneumatic Artificial Muscle. Finally, the proposed Pneumatic Artificial Muscle is tested and validated to verify that it meets the size, weight, kinetic and kinematic requirements of human knee articulation.
162

Towards detection of user-intended tendon motion with pulsed-wave Doppler ultrasound for assistive hand exoskeleton applications

Stegman, Kelly J. 31 August 2009 (has links)
Current bio-robotic assistive devices have developed into intelligent and dexterous machines. However, the sophistication of these wearable devices still remains limited by the inherent difficulty in controlling them by sensing user-intention. Even the most commonly used sensing method, which detects the electrical activity of skeletal muscles, offer limited information for multi-function control. An alternative bio-sensing strategy is needed to allow for the assistive device to bear more complex functionalities. In this thesis, a different sensing approach is introduced using Pulsed-Wave Doppler ultrasound in order to non-invasively detect small tendon displacements in the hand. The returning Doppler shifted signals from the moving tendon are obtained with a new processing technique. This processing technique involves a unique way to acquire raw data access from a commercial clinical ultrasound machine and to process the signal with Fourier analysis in order to determine the tendon displacements. The feasibility of the proposed sensing method and processing technique is tested with three experiments involving a moving string, a moving biological beef tendon and a moving human hand tendon. Although the proposed signal processing technique will be useful in many clinical applications involving displacement monitoring of biological tendons, its uses are demonstrated in this thesis for ultrasound-based user intention analysis for the ultimate goal of controlling assistive exoskeletal robotic hands.
163

The Robustness and Energy Evaluation of a Linear Quadratic Regulator for a Rehabilitation Hip Exoskeleton

Andersson, Rabé January 2022 (has links)
The implications of gait disorder, muscle weakness, and spinal cord injuries for work and age-related mobility degradation have increased the need for rehabilitation exoskeletons. Specifically, the hip rehabilitation exoskeletons due to a high percentage of the mechanical power is generated by this join during the gait cycle. Additionally, the prolonged hospitalisation after hip replacement and acetabular surgeries that affect human mobility, the social-economic impacts and the quality of life. For these reasons, a hip rehabilitation exoskeleton was our focus in this research, as it will contribute being a sustainable solution to take over the burden of physiotherapy and let patients perform their rehabilitation at home or outdoors.  This thesis details an approach of creating a hip rehabilitation exoskeleton, starting with modelling, simulating, and controlling the rehabilitation hip joint in a based-simulation environment. The mathematical model and the reason for using a series elastic actuator in the hip joint to execute the movement in a sagittal plane are more detailed. Because trajectory tracking is commonly used for controlling rehabilitation exoskeletons to ensure safe and reliable motion tracking methods; therefore, two desired torque signals were tested and analysed with the optimal linear quadratic regulator (LQR). The experiments were performed using two torque signals of a healthy hip joint—representing the sit-to-stand (STS) and the walking activity for their importance in lower limb movements. However, the mathematical model used as a basis of the optimal control strategy is usually influenced by multiple sources of uncertainties. Therefore, four case studies of various optimal control strategies were tested for a twofold reason: to choose the most optimal control strategy, and to test the energy consumption of these cases during the STS and walking movements, because the long-term goal is to produce a lightweight and reliable rehabilitation hip exoskeleton. The research showed compelling evidence that tuning the control strategy will not influence the robustness of an optimal controller only, but affect the energy consumption during the STS and walking activity, which needs to be considered in exoskeleton control design regarding its applications. / Behovet av exoskelett för rehabilitering har ökat p.g.a. komplikationer som uppstår vid arbete och åldersrelaterad försämring. Komplikationerna består bland annat av gångstörning, muskelsvaghet och ryggmärgsskador. Speciellt höftexoskelett avsett för rehabilitering är extra intressant på grund av att rehabilitering inom detta område omfattar långvarig sjukhusvistelse efter höftprotes- och acetabulära operationer. Höftleden är en av de leder som utsätts för relativt höga mekaniska påfrestningar och minskad rörelseförmåga leder inte sällan till socioekonomiska effekter och minskad livskvalité. Av denna anledning kommer höftexoskelett för rehabilitering vara det primära området i denna avhandling då det kommer att vara en lösning för att minska belastningen inom sjukvård och låta patienter utföra sin rehabilitering hemma på egen hand. Denna avhandling beskriver en metod för att skapa ett höftexoskelett avsett för rehabilitering med början i modellering, simulering och kontroll av en höftled av exoskelett i en simuleringsmiljö. Genom att använda ett serieelastiskt manöverdon för att utföra en höftledsrörelse i ett sagittalt så uppnås en mer detaljerad matematisk modell. Genom att använda banspårning, som vanligtvis används för att kontrollera exoskelett för rehabilitering för att säkerställa säkra och pålitliga rörelsespårningsmetoder, så analyserades två vridmomentssignaler mot en linjär kvadratisk regulator (LQR). Simuleringarna utfördes med hjälp av två vridmomentsignaler som representerar sitt-till-stå (STS) och gångaktivitet hos en frisk höftled. Den matematiska modellen som används för att hitta den optimala kontrollstrategin påverkas vanligtvis av flera osäkerhetskällor. Därför testades fyra fallstudier av olika optimala kontrollstrategier för två skäl: den ena för att välja den mest optimala kontrollstrategin emellan och den andra för att mäta energiförbrukningen för dessa STS och gångrörelse så att vi kan producera ett lätt och pålitligt höftexoskelett avsett för rehabilitering. Forskningen visar övertygande bevis för att inställning av styrstrategin inte bara kommer att påverka robustheten hos en optimal styrenhet utan även påverkar energiförbrukningen under STS och gångaktivitet vilket måste beaktas vid design av exoskelett.
164

Design of a Pneumatic Artificial Muscle for Powered Lower Limb Prostheses

Murillo, Jaime January 2013 (has links)
Ideal prostheses are defined as artificial limbs that would permit physically impaired individuals freedom of movement and independence rather than a life of disability and dependence. Current lower limb prostheses range from a single mechanical revolute joint to advanced microprocessor controlled mechanisms. Despite the advancement in technology and medicine, current lower limb prostheses are still lacking an actuation element, which prohibits patients from regaining their original mobility and improving their quality of life. This thesis aims to design and test a Pneumatic Artificial Muscle that would actuate lower limb prostheses. This would offer patients the ability to ascend and descend stairs as well as standing up from a sitting position. A comprehensive study of knee biomechanics is first accomplished to characterize the actuation requirement, and subsequently a Pneumatic Artificial Muscle design is proposed. A novel design of muscle end fixtures is presented which would allow the muscle to operate at a gage pressure surpassing 2.76 MPa (i.e. 400 psi) and yield a muscle force that is at least 3 times greater than that produced by any existing equivalent Pneumatic Artificial Muscle. Finally, the proposed Pneumatic Artificial Muscle is tested and validated to verify that it meets the size, weight, kinetic and kinematic requirements of human knee articulation.
165

Development and Optimization of Experimental Biosensing Protocols Using Porous Optical Transducers

Martínez Pérez, Paula 02 September 2021 (has links)
[ES] Los biosensores son dispositivos analíticos con aplicabilidad en diferentes campos y con numerosas ventajas frente a otros métodos analíticos convencionales, como son el uso de pequeños volúmenes de muestra y reactivos, su sensibilidad y su rápida respuesta, sin necesidad de pretratamiento de la muestra, equipos caros o personal especializado. Sin embargo, se trata de un campo de investigación relativamente nuevo en el que todavía queda mucho camino por andar. Esta Tesis doctoral pretende aportar un granito de arena a este campo de conocimiento mediante el estudio del potencial de diferentes materiales porosos como transductores para el desarrollo de biosensores ópticos con respuesta en tiempo real y sin marcajes. Los materiales propuestos van desde aquellos artificialmente sintetizados, como silicio poroso (SiP), nanofibras (NFs) poliméricas o membranas poliméricas comerciales, hasta materiales naturales con propiedades fotónicas que todavía no habían sido explotadas para el sensado, como son los exoesqueletos de biosílice de diatomeas. Todos ellos tienen en común la simplicidad en su obtención, evitando costosos y laboriosos procesos de nanofabricación. Para su estudio, se analizará su respuesta óptica y, en aquellos casos en los que ésta permita llevar a cabo experimentos de detección, se desarrollarán estrategias para su biofuncionalización y su implementación en experimentos de biosensado. En el caso del SiP y las NFs se han optimizado los parámetros de fabricación para obtener una respuesta óptica adecuada que permita su interrogación. A continuación, se ha llevado a cabo su biofuncionalización empleando métodos covalentes y no covalentes, así como diferentes bioreceptores (aptámeros de ADN y anticuerpos) para estudiar su potencial y sus limitaciones como biosensores. En el caso de las membranas comerciales y el exoesqueleto de sílice de diatomeas, se ha caracterizado su respuesta óptica y se han llevado a cabo experimentos de sensado de índice de refracción para estudiar su sensibilidad. Así mismo, se ha desarrollado un método de funcionalización de la superficie del exoesqueleto de diatomeas basado en el uso de polielectrolitos catiónicos. Como resultado, se ha demostrado el potencial tanto de NFs para el desarrollo de biosensores, como el de membranas comerciales para sensores cuya aplicación no requiera una elevada sensibilidad pero sí un bajo coste. Además, se ha puesto de manifiesto el gran potencial del exoesqueleto de diatomeas para el desarrollo de sensores basados en su respuesta óptica. Por el contrario, las limitaciones encontradas en el desarrollo de biosensores basados en SiP han evidenciado la necesidad de un estudio riguroso y la optimización de la estructura de materiales porosos previamente a ser usados en (bio)sensado. / [CA] Els biosensors són dispositius analítics amb aplicabilitat en diferents camps i amb nombrosos avantatges enfront d'altres mètodes analítics convencionals, com són l'ús de xicotets volums de mostra i reactius, la seua sensibilitat i la seua ràpida resposta, sense necessitat de pretractament de la mostra, equips cars o personal especialitzat. No obstant això, es tracta d'un camp d'investigació relativament nou en el qual encara queda molt camí per fer. Aquesta Tesi doctoral pretén aportar el seu òbol a aquest camp de coneixement mitjançant l'estudi del potencial de diferents materials porosos com a transductors per al desenvolupament de biosensors òptics amb resposta en temps real i sense marcatges. Els materials proposats van des d'aquells artificialment sintetitzats, com a silici porós (SiP), nanofibras (NFs) polimèriques o membranes polimèriques comercials, fins a materials naturals amb propietats fotòniques que encara no havien sigut explotades per al sensat, com són els exoesquelets de biosílice de diatomees. Tots ells tenen en comú la simplicitat en la seua obtenció, evitant costosos i laboriosos processos de nanofabricació. Per al seu estudi, s'analitzarà la seua resposta òptica i, en aquells casos en els quals aquesta permeta dur a terme experiments de detecció, es desenvoluparan estratègies per a la seua biofuncionalizació i la seua implementació en experiments de biosensat. En el cas del SiP i les NFs s'han optimitzat els paràmetres de fabricació per a obtenir una resposta òptica adequada que permeta la seua interrogació. A continuació, s'ha dut a terme la seua biofuncionalizació emprant mètodes covalents i no covalents, així com diferents bioreceptors (aptàmers d'ADN i anticossos) per a estudiar el seu potencial i les seues limitacions com a biosensors. En el cas de les membranes comercials i l'exoesquelet de sílice de diatomees, s'ha caracteritzat la seua resposta òptica i s'han dut a terme experiments de sensat d'índex de refracció per a estudiar la seua sensibilitat. Així mateix, s'ha desenvolupat un mètode de funcionalizació de la superfície de l'exoesquelet de diatomees basat en l'ús de polielectròlits catiònics. Com a resultat, s'ha demostrat el potencial tant de NFs per al desenvolupament de biosensors, com el de membranes comercials per a sensors amb una aplicació que no requerisca una elevada sensibilitat però sí un baix cost. A més, s'ha posat de manifest el gran potencial de l'exoesquelet de diatomees per al desenvolupament de sensors basats en la seua resposta òptica. Per contra, les limitacions trobades en el desenvolupament de biosensors basats en SiP han evidenciat la necessitat d'un estudi rigorós i l'optimització de l'estructura dels materials porosos prèviament a ser usats en (bio)sensat. / [EN] Biosensors are analytical devices with application in diverse fields and with several advantages relative to other conventional methods, such as the use of small volumes of sample and reagents, their sensitivity and their fast response, without the need of the sample pretreatment, expensive equipments or specialised technicians. Nevertheless, this is a relatively new research field in which there is a long way to go yet. This doctoral Thesis aims at doing its bit to this field of knowledge by studying the potential of different porous materials as transducers for the development of real-time and label-free optical biosensors. The proposed materials range from those artificially synthesised, such as porous silicon (pSi), polymeric nanofibres (NFs) or commercial polymeric membranes, to natural materials with photonic properties that had not been exploited for sensing yet, such as biosilica exoskeletons of diatoms. All of them have in common its simple production, avoiding expensive and laborious nanofabrication processes. For their study, their optical response will be analysed and, in those cases in which such optical response allows performing detection experiments, strategies for their biofunctionalisation and their implementation in biosensing experiments will be developed as well. Regarding pSi and NFs, the fabrication parameters were optimised to get a suitable optical response for their interrogation. Afterwards, their surface functionalisation was carried out by covalent and non-covalent methods, as well as different bioreceptors (DNA aptamers and antibodies), to study their potential and their constraints as biosensors. Concerning commercial membranes and the biosilica exoskeleton of diatoms, their optical response was characterised and refractive index sensing experiments were carried out to study their sensitivity. Additionally, a biofunctionalisation method for the surface of the diatoms exoskeleton was developed based on the use of cationic polyelectrolytes. As a result, it was demonstrated the potential of NFs for the development of biosensors, as well as the potential of commercial membranes for developing sensors for an application that does not require a high sensitivity but a low cost. Furthermore, the great potential of biosilica exoskeleton of diatoms for the development of sensors based on their optical response has been revealed. By contrast, the constraints found in the development of pSi illustrate the importance of an accurate study and optimisation of porous materials structure before using them for (bio)sensing. / Martínez Pérez, P. (2021). Development and Optimization of Experimental Biosensing Protocols Using Porous Optical Transducers [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/172541
166

Design pracovního exoskeletonu / Design of a working exoskeleton

Kasarová, Dominika January 2020 (has links)
Design, exoskeleton, overhead work, fatigue, human body, musculoskeletal disorder

Page generated in 0.0498 seconds