• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 91
  • 20
  • 7
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 161
  • 49
  • 35
  • 34
  • 32
  • 26
  • 24
  • 23
  • 20
  • 16
  • 15
  • 15
  • 14
  • 13
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Implementation of telerobotic control architecture including force-reflection and the naturally-transitioning rate-to-force controller

Murphy, Mark A. January 1998 (has links)
No description available.
32

Mechanical System Design of a Haptic Cobot Exoskeleton

LaFay, Eric Bryan 24 August 2007 (has links)
No description available.
33

Simulation of spring uses in an ankle exoskeleton during human gait / Simulering av fjäderanvändning i en fotledsexoskelett under mänsklig gångcykel

Magnúsdóttir, Íris Dröfn January 2020 (has links)
Background:Approximately 15% of the world’s population are affected bysome kind of disability where over 150 conditions may affect the human gaitpattern. The ability to ambulate with ease is important for overall well-being.Various assistive devices have been developed to improve mobility of theirusers. A lot of research is currently focused on ankle exoskeletons, showingpromising results in providing important assistance during stance phase of gait. Objective:To investigate how different combinations of active and passiveelements in an ankle exoskeleton affects the metabolic cost of walking. Methods:Musculoskeletal simulations were carried out in OpenSim Moco.Different assistive configurations were tested over one gait cycle using a pas-sive element, an active element, and a parallel connection of the both. Parame-ter values were modified to find the most optimal setup for reducing metaboliccost. Results:All assistive configurations were found successful in reducing bothwhole-body metabolic cost and the metabolic cost of the plantarflexors whencompared to the unassisted gait. Most whole-body metabolic cost reductionwas found when using a passive spring with resting length of 0.28 m and stiff-ness of 6 kN/m in parallel with an active motor capable of providing forceequal to 150% of body weight. The most reduction in metabolic cost of theplantarflexors was also found for a parallel connection of elements, but herewith a 100% body weight motor and spring with rest length of 0.19 m andstiffness of 10 kN/m. With higher assistance, more reduction in ankle mo-ment generated by the muscles was observed. Conclusion:Powered ankle exoskeletons are promising in terms of minimiz-ing metabolic cost during walking due to assistance during late stance phaseof gait for ambulators requiring plantarflexor assistance. Keywords:Simulation, exoskeleton, ankle, moco.
34

Investigating the Relationship Between Objective and Subjective Measures of Physical Demand During Passive Exoskeleton Use

Kelley, Sydney Aelish 24 October 2023 (has links)
Passive exoskeletons hold promise in reducing the risk of work-related musculoskeletal disorders, however further research is essential before widespread adoption can occur. This study explores the feasibility of using subjective measures of physical demand in place of costly and less practical objective measures. Normalized electromyography (nEMG) data and ratings of perceived exertion (RPE) were collected from seven different studies conducted by the Occupational Ergonomics and Biomechanics Lab (OEB lab). Employing a repeated measures three-way ANOVA, we assessed the influence of nEMG, gender, and exoskeleton type on RPE. Additionally, mean nEMG and RPE from seven passive exoskeleton-based studies conducted outside the OEB lab were assessed in order to determine if the findings from the OEB lab existed across other research environments. The results demonstrated a general positive linear trend between nEMG and RPE for both the individual and mean results. Substantial inconsistencies emerged when considering the influence of gender, exoskeleton type, and task conditions on the relationship between nEMG and RPE. These discrepancies underscore the need for more in-depth research into this topic, specifically investigating the effects of gender and exoskeleton design. / Master of Science / Passive exoskeletons, devices designed to improve safety and provide support to the body, offer the potential for reducing muscle strain and reducing work-related injury risk. However, before these devices can be widely adopted, more research is necessary. Subjective measures of exertion, an affordable and user-friendly alternative to objective measures, require further investigation before replacing traditional methods in exoskeleton research. This study explores the possible connection between subjective and objective assessments of physical demand during passive exoskeleton usage. We analyzed data from seven studies conducted by the Occupational Ergonomics and Biomechanics Lab (OEB lab), focusing on muscle activity (an objective measure) and perceived exertion (a subjective measure). Our analysis examined the relationship between these objective and subjective measures, as well as how gender, exoskeleton type, and task conditions influenced this relationship. Additionally, we considered mean values from seven passive exoskeleton studies conducted outside the OEB lab, to investigate whether our findings existed in other research environments. The results revealed that as muscle activity increased, perceived exertion tended to increase as well. Moreover, our findings demonstrated that gender, exoskeleton type, and task conditions did influence the relationship, although there was significant variability in how these factors affected it. This research sheds light on the potential for using subjective measures in exoskeleton studies, bringing us closer to making exoskeletons more practical and accessible for real-world applications while acknowledging the complexities of this relationship.
35

A Novel Method and Two Exoskeletons for Whole-arm Gravity Compensation

Turner, Ranger Christian Kelly 14 June 2021 (has links)
This thesis is centered upon the published A Novel Method and Exoskeletons for Whole-arm Gravity Compensation (Turner, Hull 2020), and includes a novel concept for supporting the weight of a person's arm or robotic linkage. The design is capable of supporting weights held near the hand, and provides support regardless of position. This support is provided with a pantograph. The upper-arm and forearm bars are mirrored by smaller copies. Force applied to a pull point on the scaled copy of the arm is flipped and applied at a support point on the forearm or to a tool near the hand. Two exoskeletons, using different linkages make use of the pantograph design. These include the Panto-Arm Exo, which uses it's slim, reduced size to comfortably assist users in lifting their arm, and the Panto-Tool Exo which is designed for a support point that coincides with a mass representing a heavy tool. The differing topologies and purposes of these two devices resulted in different qualities regarding their ability to lift weight. The Panto-Arm Exo was specifically used in human subject testing, in which fourteen users wore electromyography electrodes and performed simple arm movements and holding tasks. While the Panto-Arm Exo did not undergo stringent design improvements or user-specific optimization, the device was shown to reduce muscle use in the measured upper-arm muscles for certain arm positions. / Master of Science / This thesis is centered upon the published A Novel Method and Exoskeletons for Whole-arm Gravity Compensation (Turner, Hull 2020), includes a new way to lift a person's arm or robotic linkage. The design can lift weights close to the hand regardless of arm placement. This support is provided with a pantograph. The pantograph design is based on a mirrored, smaller copy of the upper-arm and forearm bars, which is pulled downwards to create an upwards support force at chosen support point. This point is based underneath the forearm or at a heavy tool. The concept is similar to pushing down on a teeter-totter in order to prevent the other end from dropping. Two exoskeletons, using different linkages make use of this pantograph design. The Panto-Arm Exo is slim and light. It is made to help users in lift their arm by supporting its weight. The Panto-Tool Exo has a support point that located where a mass representing a heavy tool sits. The changes between both devices means that they display different lifting qualities. The Panto-Arm Exo was worn by 14 people, also wearing electrodes that measured muscle activation. These users held weights and moved their arms around while muscle activation was recorded. While the Panto-Arm Exo wasn't fine-tuned or adjusted for individual people, it was shown to reduce muscle activation in the measured upper-arm muscles for some of the arm placements.
36

Design and Evaluation of an Underactuated Lower Body Exoskeleton

Biggers, Zackory James 08 June 2022 (has links)
An underactuated exoskeleton design for walking assistance is presented and evaluated. The exoskeleton uses one motor per leg and makes use of a pantograph to reduce the overall profile and allow the exoskeleton to closely follow the shape of the user's leg. Support is provided between the ball of the user's foot and their waist by compressing a spring in parallel with the user's leg during Stance Phase. The exoskeleton has a mass of 14.0 kg (30.8 lbs) and was tested up to a supplied spring force of 323.6 N (72.75 lbf) which equates to around 161.8 N (36.38 lbf) of assistive force at the waist. Range of motion tests showed minimal restriction at the knee and ankle, but some restriction of the hip. Human subject experiments using a simple gait detection method based on GRF at walking speeds from 0.45 m/s to 1.12 m/s (1.0 mph to 2.5 mph) were performed and showed an increase in the time between actual heel strike and predicted heel strike of approximately 0.05 seconds to 0.1 seconds. Lastly, calculations are presented examining the effect of exoskeleton assistance on the biological joint moments and optimizing the actuator design to reduce power consumption. The actual performance of the exoskeleton is compared with the calculations based on the joint angles during a typical walking cycle. / Master of Science / A design for an exoskeleton capable of providing walking assistance without requiring a motor for every joint is presented and evaluated. The exoskeleton uses one motor per leg and makes use of a pantograph to reduce the required size and allow the exoskeleton to closely follow the shape of the user's leg. Support is provided between the ball of the user's foot and their waist by compressing a spring attached beside the user's leg while the user's foot is on the ground. The exoskeleton weighs 14.0 kg (30.8 lbs) and was tested up to a supplied spring force of 323.6 N (72.75 lbf) which equates to around 161.8 N (36.38 lbf) of assistive force at the waist. Range of motion tests showed minimal restriction at the knee and ankle, but some at the hip. Testing with a human participant using a simple method for determining when to apply support and remove it based on the forces measured at the user's foot were performed at walking speeds of 0.45 m/s to 1.12 m/s (1.0 mph to 2.5 mph). These tests showed an increase in the time between when the heel of the foot initially hits the ground and when the exoskeleton code determined that it occurred of approximately 0.05 seconds to 0.1 seconds. Lastly, calculations are presented examining how exoskeleton assistance affects what is felt at the joints of the user and determining what spring stiffness would best reduce the power required from the motors. The actual performance of the exoskeleton is compared with the calculations based on the joint angles during normal human walking.
37

Biomechanics-Based Optimization for Exoskeleton Design

Hook, Melanie Lynn 24 May 2023 (has links)
The goal of this thesis is to use biomechanical data describing shoulder motion to determine optimal parameters to assist in the design of a 5 DOF active shoulder exoskeleton. This thesis will provide a proof of concept on optimization techniques using motion data using a simplified 3 DOF model to facilitate future work implementing a full 5 DOF model. Optimization will be performed to determine the link lengths and, consequently, the locations of the joints of the exoskeleton by considering the human's workspace to maximize range of motion and promote user safety by minimizing collisions of the exoskeleton with the user and with the exoskeleton itself. The thesis will detail the development of computational models of the human and proposed exoskeleton, the processing of experimental data used to estimate the human's capabilities, optimization, and future work. This work will contribute to a large-scale NSF-funded project of building an upper body exoskeleton emulator. The emulator will promote the widespread adoption of exoskeletons in industry by providing a test-bed to streamline the rapid design of various assistance profiles for various users and tasks. / Master of Science / An exoskeleton is a robotic assistive device used in industrial and rehabilitative settings. This thesis will use data describing how the human shoulder moves during certain tasks to help design an exoskeleton to assist with theses tasks. A model of the human shoulder and a model of the exoskeleton will be developed and used in an optimization to figure out the best dimensions of the exoskeleton links to support the human's movements.
38

Mechanical Redesign and Implementation of Intuitive User Input Methods for a Hand Exoskeleton Informed by User Studies on Individuals with Chronic Upper Limb Impairments

Meier, Tess Bisbee 08 April 2019 (has links)
Individuals with upper limb motor deficits due to neurological conditions, such as stroke and traumatic brain injury, may exhibit hypertonia and spasticity, which makes it difficult for these individuals to open their hand. The Hand Orthosis with Powered Extension (HOPE) Hand was created in 2018. The performance of the HOPE Hand was evaluated by conducting a Box and Blocks test with an impaired subject. Improvements were identified and the HOPE Hand was mechanically redesigned to increase the functionality in performing grasps. The original motor configuration was reorganized to include active thumb flexion and extension, as well as thumb abduction/adduction. An Electromyography (EMG) study was conducted on 19 individuals (10 healthy, 9 impaired) to evaluate the viability of EMG device control for the specified user group. EMG control, voice control, and manual control were implemented with the HOPE Hand 2.0 and the exoskeleton system was tested for usability during a second Box and Blocks test.
39

HydroBone and Variable Stiffness Exoskeleton with Knee Actuation

Sridar, Saivimal 27 April 2016 (has links)
The HydroBone is a variable stiffness load-bearing element, which utilizes jamming of granular media to achieve stiffness modulation, controlled by the application of positive pressure. Several compressive tests were conducted on the HydroBone in order to quantify the load-bearing capability of the system. It was determined that the stiffness of the HydroBone was a function of the internal pressure of the system. A controller was modeled based on this function to achieve automatic stiffness modulation of the HydroBone. An exoskeleton was designed based on the HydroBone and various actuators for the exoskeleton were considered. The HydroMuscle, a soft linear actuator was selected to provide knee actuation for the exoskeleton, based on several efficiency and force output test conducted. A knee brace was designed, capable of producing 15Nm of torque on the knee, actuated using Bowden cables coupled to the HydroMuscles.
40

Projeto mecânico de exoesqueleto robótico para membros inferiores. / Mechanical design of robotic exoskeleton for lower limb.

Santos, Diego Pedroso dos 26 July 2011 (has links)
Este trabalho consiste no projeto mecânico de um exoesqueleto robótico para paraplégicos com lesões medulares entre T2 a L1, ou seja, sem mobilidade da cintura para baixo e com mobilidade do peito para cima, inclusive das mãos. A utilização do equipamento necessita da utilização de muletas ou andadores. O mecanismo possui seis graus de liberdade, sendo quatro atuados por motorredutores (joelhos e quadris) e dois suportados por molas (tornozelos). Os motorredutores são projetados especialmente para o exoesqueleto, sendo compostos de um motor de corrente continua de imã permanente e um redutor harmônico do tipo panqueca acoplados de forma adequada para minimizar peso e volume. Para calcular os esforços solicitados em cada articulação foi desenvolvido um modelo dinâmico do corpo humano para simular os movimentos que o exoesqueleto é capaz de realizar, que são: marchar, sentar, levantar e subir e descer escadas. O modelo utilizado do corpo humano possui cinco ligamentos rígidos e é capaz de simular movimentos no plano vertical. Os resultados obtidos da simulação são comparados com resultados experimentais da literatura e são considerados satisfatórios. / This work presents a mechanical design of a robotic exoskeleton for paraplegics with spinal cord injuries between T2 to L1, that means, without mobility from the waist down and with mobility from the chest up, including the hands. For using the equipment the paraplegic needs the aid of crutches or walkers. The mechanism has six degrees of freedom, with four degrees actuated by gear motors (knees and hips), and two degrees supported by springs (ankles). The gear motors are designed especially for the exoskeleton. They are composed by an permanent magnet brushless electric motor conveniently coupled with an pancake harmonic speed reducer to minimize weight and volume. For calculating the efforts in each joint a model for the human body is developed to simulate the movements the exoskeleton can perform, which are: walk, sit, standup and climb up and down stairs. The human body model has five rigid links and it is capable to simulate movements in the vertical plane. The results obtained in the simulations are compared very well with experimental results from the literature.

Page generated in 0.0537 seconds