Spelling suggestions: "subject:"expectile regression"" "subject:"expectiles regression""
1 |
Expektilová regrese / Expectile regressionOndřej, Josef January 2015 (has links)
In this thesis we present an alternative to quantiles, which is known as expectiles. At first we define the notion of expectile of a distribution of ran- dom variable and then we show some of its basic properties such as linearity or monotonic behavior of τ-th expectile eτ in τ. Let (Y, X), Y ∈ R, X ∈ Rp be a ran- dom vector. We define conditional expectile of Y given X = x, which we denote eτ (Y |X = x). We introduce model of expectile regression eτ (Y |X = x) = x⊤ βτ , where βτ ∈ Rp and we examine asymptotic behavior of estimate of the regression coefficients βτ and ways how to calculate it. Further we introduce semiparametric expectile regression, which generalizes the previous case and adds restrictions on the estimate of the regression coefficients which enforce desired properties such as smoothness of fitted curves. We illustrate the use of theoretical results on me- chanographic data, which describe dependence of power and force of a jump on age of children and adolescents aged between 6 and 18. Keywords: expectiles, expectile regression, quantiles, penalized B-splines 1
|
2 |
On Sufficient Dimension Reduction via Asymmetric Least SquaresSoale, Abdul-Nasah, 0000-0003-2093-7645 January 2021 (has links)
Accompanying the advances in computer technology is an increase collection of high dimensional data in many scientific and social studies. Sufficient dimension reduction (SDR) is a statistical method that enable us to reduce the dimension ofpredictors without loss of regression information. In this dissertation, we introduce principal asymmetric least squares (PALS) as a unified framework for linear and nonlinear sufficient dimension reduction. Classical methods such as sliced inverse regression (Li, 1991) and principal support vector machines (Li, Artemiou and Li, 2011) often do not perform well in the presence of heteroscedastic error, while our proposal addresses this limitation by synthesizing different expectile levels. Through extensive numerical studies, we demonstrate the superior performance of PALS in terms of both computation time and estimation accuracy. For the asymptotic analysis of PALS for linear sufficient dimension reduction, we develop new tools to compute the derivative of an expectation of a non-Lipschitz function.
PALS is not designed to handle symmetric link function between the response and the predictors. As a remedy, we develop expectile-assisted inverse regression estimation (EA-IRE) as a unified framework for moment-based inverse regression. We propose to first estimate the expectiles through kernel expectile regression, and then carry out dimension reduction based on random projections of the regression expectiles. Several popular inverse regression methods in the literature including slice inverse regression, slice average variance estimation, and directional regression are extended under this general framework. The proposed expectile-assisted methods outperform existing moment-based dimension reduction methods in both numerical studies and an analysis of the Big Mac data. / Statistics
|
3 |
Estimation de mesures de risque pour des distributions elliptiques conditionnées / Estimation of risk measures for conditioned elliptical distributionsUsseglio-Carleve, Antoine 26 June 2018 (has links)
Cette thèse s'intéresse à l'estimation de certaines mesures de risque d'une variable aléatoire réelle Y en présence d'une covariable X. Pour cela, on va considérer que le vecteur (X,Y) suit une loi elliptique. Dans un premier temps, on va s'intéresser aux quantiles de Y sachant X=x. On va alors tester d'abord un modèle de régression quantile assez répandu dans la littérature, pour lequel on obtient des résultats théoriques que l'on discutera. Face aux limites d'un tel modèle, en particulier pour des niveaux de quantile dits extrêmes, on proposera une nouvelle approche plus adaptée. Des résultats asymptotiques sont donnés, appuyés par une étude numérique puis par un exemple sur des données réelles. Dans un second chapitre, on s'intéressera à une autre mesure de risque appelée expectile. La structure du chapitre est sensiblement la même que celle du précédent, à savoir le test d'un modèle de régression inadapté aux expectiles extrêmes, pour lesquels on propose une approche méthodologique puis statistique. De plus, en mettant en évidence le lien entre les quantiles et expectiles extrêmes, on s'aperçoit que d'autres mesures de risque extrêmes sont étroitement liées aux quantiles extrêmes. On se concentrera sur deux familles appelées Lp-quantiles et mesures d'Haezendonck-Goovaerts, pour lesquelles on propose des estimateurs extrêmes. Une étude numérique est également fournie. Enfin, le dernier chapitre propose quelques pistes pour traiter le cas où la taille de la covariable X est grande. En constatant que nos estimateurs définis précédemment étaient moins performants dans ce cas, on s'inspire alors de quelques méthodes d'estimation en grande dimension pour proposer d'autres estimateurs. Une étude numérique permet d'avoir un aperçu de leurs performances / This PhD thesis focuses on the estimation of some risk measures for a real random variable Y with a covariate vector X. For that purpose, we will consider that the random vector (X,Y) is elliptically distributed. In a first time, we will deal with the quantiles of Y given X=x. We thus firstly investigate a quantile regression model, widespread in the litterature, for which we get theoretical results that we discuss. Indeed, such a model has some limitations, especially when the quantile level is said extreme. Therefore, we propose another more adapted approach. Asymptotic results are given, illustrated by a simulation study and a real data example.In a second chapter, we focus on another risk measure called expectile. The structure of the chapter is essentially the same as that of the previous one. Indeed, we first use a regression model that is not adapted to extreme expectiles, for which a methodological and statistical approach is proposed. Furthermore, highlighting the link between extreme quantiles and expectiles, we realize that other extreme risk measures are closely related to extreme quantiles. We will focus on two families called Lp-quantiles and Haezendonck-Goovaerts risk measures, for which we propose extreme estimators. A simulation study is also provided. Finally, the last chapter is devoted to the case where the size of the covariate vector X is tall. By noticing that our previous estimators perform poorly in this case, we rely on some high dimensional estimation methods to propose other estimators. A simulation study gives a visual overview of their performances
|
Page generated in 0.086 seconds