Spelling suggestions: "subject:"1experience replay"" "subject:"1experience deplay""
1 |
A Computational Model of Learning from Replayed Experience in Spatial NavigationMirian HosseinAbadi, MahdiehSadat Unknown Date
No description available.
|
2 |
Dynamic Graph Embedding on Event Streams with Apache FlinkPerini, Massimo January 2019 (has links)
Graphs are often considered an excellent way of modeling complex real-world problems since they allow to capture relationships between items. Because of their ubiquity, graph embedding techniques have occupied research groups, seeking how vertices can be encoded into a low-dimensional latent space, useful to then perform machine learning. Recently Graph Neural Networks (GNN) have dominated the space of embeddings generation due to their inherent ability to encode latent node dependencies. Moreover, the newly introduced Inductive Graph Neural Networks gained much popularity for inductively learning and representing node embeddings through neighborhood aggregate measures. Even when an entirely new node, unseen during training, appears in the graph, it can still be properly represented by its neighboring nodes. Although this approach appears suitable for dynamic graphs, available systems and training methodologies are agnostic of dynamicity and solely rely on re-processing full graph snapshots in batches, an approach that has been criticized for its high computational costs. This work provides a thorough solution to this particular problem via an efficient prioritybased method for selecting rehearsed samples that guarantees low complexity and high accuracy. Finally, a data-parallel inference method has been evaluated at scale using Apache Flink, a data stream processor for real-time predictions on high volume graph data streams. / Molti problemi nel mondo reale possono essere rappresentati come grafi poichè queste strutture dati consentono di modellare relazioni tra elementi. A causa del loro vasto uso, molti gruppi di ricerca hanno tentato di rappresentare i vertici in uno spazio a bassa dimensione, utile per poi poter utilizzare tecniche di apprendimento automatico. Le reti neurali per grafi sono state ampiamente utilizzate per via della loro capacità di codificare dipendenze tra vertici. Le reti neurali induttive recentemente introdotte, inoltre, hanno guadagnato popolarità poichè consentono di generare rappresentazioni di vertici aggregando altri vertici. In questo modo anche un nodo completamente nuovo può comunque essere rappresentato utilizzando i suoi nodi vicini. Sebbene questo approccio sia adatto per grafici dinamici, i sistemi ad oggi disponibili e gli algoritmi di addestramento si basano esclusivamente sulla continua elaborazione di grafi statici, un approccio che è stato criticato per i suoi elevati costi di calcolo. Questa tesi fornisce una soluzione a questo problema tramite un metodo efficiente per l’allenamento di reti neurali induttive basato su un’euristica per la selezione dei vertici. Viene inoltre descritto un metodo per eseguire predizioni in modo scalabile in tempo reale utilizzando Apache Flink, un sistema per l’elaborazione di grandi quantità di flussi di dati in tempo reale. / Grafer anses ofta vara ett utmärkt sätt att modellera komplexa problem i verkligheten eftersom de gör det möjligt att fånga relationer mellan objekt. På grund av deras allestädes närhet har grafinbäddningstekniker sysselsatt forskningsgrupper som undersöker hur hörn kan kodas in i ett lågdimensionellt latent utrymme, vilket är användbart för att sedan utföra maskininlärning. Nyligen har Graph Neural Networks (GNN) dominerat utrymmet för inbäddningsproduktion tack vare deras inneboende förmåga att koda latenta nodberoenden. Dessutom fick de nyinförda induktiva grafiska nervnäten stor popularitet för induktivt lärande och representerande nodbäddningar genom sammanlagda åtgärder i grannskapet. Även när en helt ny nod, osynlig under träning, visas i diagrammet, kan den fortfarande representeras ordentligt av dess angränsande noder. Även om detta tillvägagångssätt tycks vara lämpligt för dynamiska grafer, är tillgängliga system och träningsmetodologier agnostiska för dynamik och förlitar sig bara på att behandla fullständiga ögonblicksbilder i partier, en metod som har kritiserats för dess höga beräkningskostnader. Detta arbete ger en grundlig lösning på detta specifika problem via en effektiv prioriteringsbaserad metod för att välja repeterade prover som garanterar låg komplexitet och hög noggrannhet. Slutligen har en dataparallell inferensmetod utvärderats i skala med Apache Flink, en dataströmprocessor för realtidsprognoser för grafiska dataströmmar med hög volym.
|
3 |
Utilizing energy-saving techniques to reduce energy and memory consumption when training machine learning models : Sustainable Machine Learning / Implementation av energibesparande tekniker för att minska energi- och minnesförbrukningen vid träning av modeller för maskininlärning : Hållbar maskininlärningEl Yaacoub, Khalid January 2024 (has links)
Emerging machine learning (ML) techniques are showing great potential in prediction performance. However, research and development is often conducted in an environment with extensive computational resources and blinded by prediction performance. In reality, computational resources might be contained on constrained hardware where energy and memory consumption must be restrained. Furthermore, shortages of sufficiently large datasets for ML is a frequent problem, combined with the cost of data retention. This generates a significant demand for sustainable ML. With sustainable ML, practitioners can train ML models on less data, which reduces memory and energy consumption during the training process. To explore solutions to these problems, this thesis dives into several techniques that have been introduced in the literature to achieve energy-savings when training machine learning models. These techniques include Quantization-Aware Training, Model Distillation, Quantized Distillation, Continual Learning and a deeper dive into Siamese Neural Networks (SNNs), one of the most promising techniques for sustainability. Empirical evaluations are conducted using several datasets to illustrate the potential of these techniques and their contribution to sustainable ML. The findings of this thesis show that the energy-saving techniques could be leveraged in some cases to make machine learning models more manageable and sustainable whilst not compromising significant model prediction performance. In addition, the deeper dive into SNNs shows that SNNs can outperform standard classification networks, under both the standard multi-class classification case and the Continual Learning case, whilst being trained on significantly less data. / Maskininlärning har i den senaste tidens forskning visat stor potential och hög precision inom klassificering. Forskning, som ofta bedrivs i en miljö med omfattande beräkningsresurser, kan lätt bli förblindad av precision. I verkligheten är ofta beräkningsresurser lokaliserade på hårdvara där energi- och minneskapacitet är begränsad. Ytterligare ett vanligt problem är att uppnå en tillräckligt stor datamängd för att uppnå önskvärd precision vid träning av maskininlärningsmodeller. Dessa problem skapar en betydande efterfrågan av hållbar maskininlärning. Hållbar maskininlärning har kapaciteten att träna modeller på en mindre datamängd, vilket minskar minne- och energiförbrukning under träningsprocessen. För att utforska hållbar maskininlärning analyserar denna avhandling Quantization-Aware Training, Model Distillation, Quantized Distillation, Continual Learning och en djupare evaluering av Siamesiska Neurala Nätverk (SNN), en av de mest lovande teknikerna inom hållbar maskininlärning. Empiriska utvärderingar utfördes med hjälp av flera olika datamängder för att illustrera potentialen hos dessa tekniker. Resultaten visar att energibesparingsteknikerna kan utnyttjas för att göra maskininlärningsmodeller mer hållbara utan att kompromissa för precision. Dessutom visar undersökningen av SNNs att de kan överträffa vanliga neurala nätverk, med och utan Continual Learning, även om de tränas på betydligt mindre data.
|
Page generated in 0.0741 seconds