• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Evidências anatomofuncionais da participação do núcleo retrotrapezóide na expiração ativa. / Anatomofuctional evidences that retrotrapezoid nucleus regulates active expiration.

Silva, Josiane do Nascimento 10 October 2014 (has links)
O padrão respiratório é formado por 3 fases: inspiração, pós-inspiração, e expiração ativa. Os mecanismos neurais de controle respiratório são organizados por um sistema de neurônios localizados no bulbo. Evidências sugerem o envolvimento dos neurônios quimiossensíveis do núcleo retrotrapezóide (RTN) no controle da expiração ativa. Portanto, o objetivo desta dissertação foi esclarecer a existência de uma projeção do RTN para o a região que contém os neurônios pré-motores do grupamento respiratório ventrolateral caudal (cVRG), o fenótipo dos neurônios e os neurotransmissores envolvidos nessa projeção. Utilizaram-se ratos Wistar adultos, submetidos a procedimentos imunoistoquímicos e eletrofisiológicos. Os resultados mostraram evidências anatomofuncionais de projeções excitatórias da região do RTN para o cVRG. Esta projeção está ativa durante uma situação de hipercapnia, mas não envolve neurônios serotoninérgicos da rafe e tem pouco envolvimento dos neurônios quimiossensíveis do RTN. / The eupnoeic pattern of respiration consists of three phases: inspiration, post-inspiration and stage 2 of expiration (E2). The neural mechanisms for respiratory control are carefully organized by neuron system localized into the medulla oblongata and this system is highly sensitive to CO2. Evidences suggest the involvement of chemosensitive neurons of the retrotrapezoid nucleus (RTN) in the control of expiratory activity of the caudal ventral respiratory group (cVRG) (Janczewski e Feldman, 2006a). In this study, investigate the existence of a projection the RTN from cVRG, the phenotype of the neurons and the neurotransmitters involved in this projection. The experiments were performed in adult male Wistar rats, submitted to immunohistochemical and electrophysiological approaches. The results showed anatomofunctional evidences of excitatory projections from RTN to caudal ventral respiratory group region. This pathway is active during hypercapnia, has minimal involvement of Phox2b neurons of RTN and do not involve serotonergic neurons of raphe.
2

Geração de expiração ativa : mecanismos centrais e implicações nas alterações cardiorrespiratórias associadas à hipóxia intermitente

Lemes, Eduardo Vieira 05 August 2016 (has links)
Submitted by Livia Mello (liviacmello@yahoo.com.br) on 2016-10-14T13:19:28Z No. of bitstreams: 1 TeseEVL.pdf: 11027777 bytes, checksum: 41dbb4fdedb476e263115ce57e0a47fd (MD5) / Approved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2016-11-08T18:47:31Z (GMT) No. of bitstreams: 1 TeseEVL.pdf: 11027777 bytes, checksum: 41dbb4fdedb476e263115ce57e0a47fd (MD5) / Approved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2016-11-08T18:47:43Z (GMT) No. of bitstreams: 1 TeseEVL.pdf: 11027777 bytes, checksum: 41dbb4fdedb476e263115ce57e0a47fd (MD5) / Made available in DSpace on 2016-11-08T18:47:52Z (GMT). No. of bitstreams: 1 TeseEVL.pdf: 11027777 bytes, checksum: 41dbb4fdedb476e263115ce57e0a47fd (MD5) Previous issue date: 2016-08-05 / Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / The exposure to periods of hypoxemia and reoxygenation, as observed in patients with obstructive sleep apnea (OSA), promotes compensatory increases in ventilation, sympathetic activity and blood pressure (BP), by mechanisms not fully understood. In the present study, we investigated the central mechanisms responsible for the cardiorespiratory changes induced by acute intermittent hypoxia (AIH; 10 episodes of 6-7% O2 for 45 sec, every 5 min hyperoxia) either in adult male rats (270-280 g) anesthetized with urethane (1.2 g / kg, ip) or in in situ working heart-brainstem preparations of juvenile male rats (65-75 g). In in situ preparations, the AIH promoted long-term facilitation (LTF), of at least 1 hour, in the phrenic nerve (PN), abdominal (AbN) and thoracic sympathetic (tSN) activities (n=9, P<0.05). In these animals, we observed that the increase in tSN activity induced by AIH occurred during the late part of expiratory period, namely late-expiratory (late-E) phase, coupled with the emergence of late-E bursts in AbN activity. Considering studies showing the role of serotonin (5-HT) as the mediator of cardiorespiratory changes elicited by AIH, we verified that ketanserin (5-HT2 antagonist) microinjections in the RTN/pFRG in anesthetized rats, during AIH exposure, prevented the increase in abdominal motor activity (ABD) evoked by AIH (n=5, P<0.05), indicating the involvement of 5-HT2 receptor of RTN/pFRG in the generation of active expiration induced by AIH. We also showed that repeated activation of 5-HT2 receptors (3x every 5 min) in the RTN/pFRG of in situ preparation, using DOI, promoted LTF of the PN, AbN and tSN activities (n=9, P<0.05). Interestingly, the increase in the late-E AbN activity induced by DOI in the RTN/pFRG was critical for the development of sympathetic overactivity during late-E phase (n=9, P<0.05), similarly to the pattern observed in in situ preparations subjected to AIH. Microinjections of vehicle in the RTN/pFRG did not change PN, AbN and tSN activities. The increase in respiratory and sympathetic activities promoted by DOI microinjection in the RTN/pFRG was associated to sensitization/facilitation of CO2- drive to breath, since the exposure to hypocapnia eliminated the respiratory activity in control in situ preparation, but not in preparation that received DOI into the RTN/pFRG (n=9, P<0.05). Furthermore, we verified that the DOI-induced sensitization in the RTN/pFRG, which was determinant for the development of respiratory and sympathetic LTF, also depended on glutamatergic neurotransmission in the RTN/pFRG (n=9, P<0.05), because microinjections of kynurenic acid (glutamate receptor antagonist) were able to eliminate the respiratory and sympathetic LTF. Indeed, we found that glutamatergic neurotransmission of the RTN/pFRG is essential for the generation of active expiration, since kynurenic microinjections in the RTN/pFRFG of control in situ preparations abolished the late-E bursts in AbN and tSN induced by hypercapnia. Altogether, our data indicate that interactions between serotonergic and glutamatergic mechanisms in the RTN/pFRG is an essential mechanism for the occurrence of active expiration and late-E sympathetic overactivity after AIH exposure. Moreover, our findings suggest that the activation of 5-HT2 receptors in the RTN/pFRG modulates the excitation of central chemoreceptors of this area, through sensitization/facilitation of glutamatergic mechanisms. / A exposição a episódios de hipoxemia seguido de reoxigenação, como observado na apneia obstrutiva do sono (AOS), promove aumentos compensatórios na ventilação, na atividade simpática e na pressão arterial (PA), por mecanismos ainda não completamente elucidados. No presente estudo, exploramos os mecanismos centrais envolvidos nas alterações cardiorrespiratórias induzidas pela hipóxia intermitente aguda (HIA; 10 episódios 6-7% O2 por 45 s, a cada 5 min de hiperóxia) em ratos adultos (270-280 g) anestesiados com uretana (1,2 g/Kg, i.p.) e ratos jovens (65-75 g) na preparação in situ coração-tronco cerebral isolados. Em preparações in situ, a HIA promoveu uma facilitação a longo prazo (LTF), com duração de, pelo menos, 1 hora, nas atividades dos nervos frênico (PN), abdominal (AbN) e simpático torácico (tSN) (n=9, P<0,05). Nestes animais, observamos que o aumento da atividade tSN ocorreu, preferencialmente, durante a fase final do ciclo expiratório, denominada de fase E- tardia. Tal aumento da atividade simpática induzido pela HIA mostrou-se associada ao aparecimento de disparos E-tardios na atividade AbN (padrão de expiração ativa). Considerando estudos que envolvem a participação da serotonina (5-HT) como mediador das alterações cardiorrespiratórias induzidas pela HIA, verificamos em ratos anestesiados que microinjeções de ketanserina (antagonista 5-HT2) no RTN/pFRG, durante HIA, preveniram o aumento da atividade motora abdominal (ABD) evocado pela HIA (n=5, P<0,05), indicando a participação dos receptores 5-HT2 do RTN/pFRG na geração de expiração ativa induzida pela HIA. Mostramos também que a ativação repetida dos receptores 5-HT2 (3x a cada 5 min) no RTN/pFRG, com o agonista DOI, promoveram LTF nas atividades PN, AbN e tSN (n=9, P<0,05) em preparações in situ. Interessantemente, o aumento da atividade E-tardia AbN, induzido por DOI no RTN/pFRG, foi determinante para o desenvolvimento de hiperatividade simpática na fase expiratória E-tardia (n=9, P<0,05), semelhante àquela observada em preparações in situ submetidas à HIA. Tal elevação das atividades PN, AbN e tSN não foram observadas após a realização de microinjeção veículo no RTN/pFRG. O aumento nas atividades respiratórias e simpática promovidas pela microinjeção de DOI no RTN/pFRG foi associado a sensibilização/facilitação da atividade respiratória dependente de CO 2, uma vez que a redução do drive respiratório, por meio da exposição à hipocapnia, aboliu a atividade respiratória em preparações in situ controle, mas não em preparações que receberam microinjeções de DOI (n=9, P<0,05). Ademais, mostramos que a sensibilização induzida por DOI no RTN/pFRG, na qual resulta no LTF das atividades respiratória e simpática, dependem da neurotransmissão glutamatérgica também no RTN/pFRG (n=9, P<0,05), uma vez que microinjeções de ácido quinurênico (antagonista dos receptores glutamatérgicos) foram capazes de reverter o LTF respiratório e simpático. De fato, a neurotransmissão glutamatérgica é essencial para a geração do padrão expiratório, em resposta à hipercapnia, uma vez que o microinjeções de ácido quinurênico no RTN/pFRG de ratos controle, durante a exposição à hipercapnia, elimina os disparos E-tardios na atividade simpática e abdominal de preparações in situ. Em conjunto, nossos resultados sugerem uma interação importante entre os mecanismos serotoninérgicos e glutamatérgicos no RTN/pFRG, na qual parece ser determinante para o aparecimento do padrão de expiração ativa e aumento da atividade simpática após à exposição à HIA. Nossos dados sugerem que a ativação dos receptores 5- HT2 do RTN/pFRG modula a excitação das células quimiossensíveis desta região, mediante facilitação de mecanismos glutamatérgicos. / FAPESP: 2014/06.976-2; 2013/17.251-6 / CNPq: 478640/2013-7
3

Evidências anatomofuncionais da participação do núcleo retrotrapezóide na expiração ativa. / Anatomofuctional evidences that retrotrapezoid nucleus regulates active expiration.

Josiane do Nascimento Silva 10 October 2014 (has links)
O padrão respiratório é formado por 3 fases: inspiração, pós-inspiração, e expiração ativa. Os mecanismos neurais de controle respiratório são organizados por um sistema de neurônios localizados no bulbo. Evidências sugerem o envolvimento dos neurônios quimiossensíveis do núcleo retrotrapezóide (RTN) no controle da expiração ativa. Portanto, o objetivo desta dissertação foi esclarecer a existência de uma projeção do RTN para o a região que contém os neurônios pré-motores do grupamento respiratório ventrolateral caudal (cVRG), o fenótipo dos neurônios e os neurotransmissores envolvidos nessa projeção. Utilizaram-se ratos Wistar adultos, submetidos a procedimentos imunoistoquímicos e eletrofisiológicos. Os resultados mostraram evidências anatomofuncionais de projeções excitatórias da região do RTN para o cVRG. Esta projeção está ativa durante uma situação de hipercapnia, mas não envolve neurônios serotoninérgicos da rafe e tem pouco envolvimento dos neurônios quimiossensíveis do RTN. / The eupnoeic pattern of respiration consists of three phases: inspiration, post-inspiration and stage 2 of expiration (E2). The neural mechanisms for respiratory control are carefully organized by neuron system localized into the medulla oblongata and this system is highly sensitive to CO2. Evidences suggest the involvement of chemosensitive neurons of the retrotrapezoid nucleus (RTN) in the control of expiratory activity of the caudal ventral respiratory group (cVRG) (Janczewski e Feldman, 2006a). In this study, investigate the existence of a projection the RTN from cVRG, the phenotype of the neurons and the neurotransmitters involved in this projection. The experiments were performed in adult male Wistar rats, submitted to immunohistochemical and electrophysiological approaches. The results showed anatomofunctional evidences of excitatory projections from RTN to caudal ventral respiratory group region. This pathway is active during hypercapnia, has minimal involvement of Phox2b neurons of RTN and do not involve serotonergic neurons of raphe.
4

Participação dos neurônios noradrenérgicos do Locus Coeruleus na geração central das atividades inspiratória e expiratória em resposta à ativação dos quimiorreceptores centrais de ratos / Participation of the noradrenergic neurons of Locus Coeruleus in the central generation of inspiratory and expiratory activities in response to the activation of the central chemoreceptors of rats

Magalhães, Karolyne Silva 25 February 2019 (has links)
Em condições basais a inspiração é um fenômeno ativo enquanto a expiração é um fenômeno passivo. Em condições de desafios metabólicos, como aumento da pressão parcial de CO2 e da [H+] no sangue arterial (hipercapnia/acidose), ocorre aumento da atividade inspiratória, a expiração passa a ser ativa, produzindo aumentos da atividade dos músculos abdominais, e a resistência das vias aéreas superiores reduz. O Locus Coeruleus (LC) contém neurônios noradrenérgicos (NE) que aumentam sua frequência de potenciais de ação quando expostos a elevados níveis de CO2/[H+] e se comunicam com os neurônios respiratórios do tronco encefálico para fazer ajustes compensatórios na ventilação pulmonar durante a hipercapnia/acidose. Utilizando preparações in situ de ratos avaliamos a contribuição dos neurônios NE do LC na geração central das atividades inspiratória e expiratória e no controle da resistência das vias aéreas superiores em condições basais e em resposta a hipercapnia/acidose. Neurônios NE do LC foram seletivamente silenciados de maneira aguda e reversível pela aplicação do peptídeo de inseto alatostatina (Alst) após a transfecção celular utilizando um vetor lentiviral para expressão de receptores de Drosophila para a Alst acoplados a proteína G inibitória (AlstR). Dez a doze dias após, realizamos a abordagem dorsal da preparação in situ de ratos. Os nervos frênico (PN), abdominal (AbN), hipoglosso (HN) e vago cervical (cVN) foram registrados e analisados em diferentes fases do ciclo respiratório. Registros extracelulares single unit dos neurônios do LC também foram realizados. A frequência respiratória (fR), a duração da inspiração (DI) e da expiração (DE), a expiração ativa, a magnitude da modulação respiratória e a frequência de potenciais de ação dos neurônios do LC também foram avaliadas. A inibição seletiva dos neurônios NE do LC usando Alst não provocou alterações significativas na atividade dos motores nervos respiratórios, na fR, DI e DE em normocapnia. A inibição desses neurônios antes e/ou durante à hipercapnia/acidose reduziu significantemente a amplitude do AbN e em alguns momentos, eliminou a expiração ativa, além de reduzir as respostas inspiratórias do PN e HN (amplitude) e a atividade pós-inspiratória (adução da glote) do cVN. Quandoda ausência da expiração ativa após a inibição dos neurônios NE do LC, a DI, DE e a duração da atividade pré-inspiratória do cVN (abdução da glote) e HN (protusão da língua) foram normalizadas. A adição de Alst em preparações in situ de ratos que não expressavam o AsltR durante a hipercapnia/acidose não causou alterações no padrão dos nervos motores respiratórios registrados, na incidência da expiração ativa e na fR, DI e DE. Entre os neurônios do LC registrados, encontramos três populações com diferentes padrões de modulação pela respiração e uma com atividade tônica. A hipercapnia/acidose aumentou a magnitude da modulação respiratória e a frequência de potenciais de ação destas populações neuronais. Esses dados demonstram que os neurônios NE do LC exercem importante papel modulatório excitatório na geração central da inspiração, expiração ativa e no controle da resistência das vias aéreas superiores evocados pela hipercapnia/acidose em preparações in situ de ratos / In basal conditions, inspiration is an active phenomenon while expiration is a passive phenomenon. Under conditions of high metabolic demands, such as increased in partial pressure of CO2 and [H+] in arterial blood (hypercapnia/acidosis), there is an increase in inspiratory activity, expiration becomes active, producing increases in abdominal muscle activity, and the resistance of the upper airways reduces. The Locus Coeruleus (LC) contains noradrenergic (NE) neurons that increase their firing frequency when exposed to elevated CO2/[H+] levels and communicate with respiratory brainstem neurons to make compensatory adjustments in lung ventilation during hypercapnia/acidosis. Using in situ preparations of rats, we evaluated the contribution of LC NE neurons in the central generation of inspiratory and expiratory activities, as well as in the control of upper airway resistance in basal conditions and in response to hypercapnia/acidosis. LC NE neurons were selectively acutely and reversibly silenced by application of the insect allatostatin peptide (Alst) after cellular transfection using a lentiviral vector for expression of Alst Drosophila receptors coupled to inhibitory G protein (AlstR). Ten to twelve days after, we performed the dorsal approach of the in situ preparation of rats. The phrenic (PN), abdominal (AbN), hypoglossal (HN) and cervical vagus (cVN) nerves were recorded and analyzed in different phases of the respiratory cycle. Single unit extracellular records of LC neurons were also performed. Respiratory frequency (fR), duration of inspiration (DI) and expiration (DE), active expiration, the magnitude of respiratory modulation and the firing frequency of LC neurons were also evaluated. Selective inhibition of LC NE neurons using Alst did not produce significant changes in the activity of respiratory motor nerves, fR, DI and DE in normocapnia. Inhibition of these neurons before and/or during hypercapnia/acidosis significantly reduced AbN amplitude and its incidence, as well as the inspiratory responses of PN and HN (amplitude) and post-inspiratory activity (glottal adduction) of the cVN. In the absence of active expiration after the inhibition of LC NE neurons, the DI, DE and the pre-inspiratory activity of cVN (glottal abduction) and HN (tongue protrusion) were normalized. The perfusion of Alst in in situ preparations of rats withoutthe expression of the AsltR during hypercapnia/acidosis did not change the pattern of the recorded respiratory motor nerves, the incidence of active expiration, fR, DI and DE. Among the registered LC neurons, we found three populations with different patterns of respiratory modulation and one with tonic activity. Hypercapnia/acidosis increased the magnitude of the respiratory modulation and their firing frequency. These data demonstrate that LC NE neurons exert an important excitatory modulatory role in the central generation of inspiration, active expiration and in the control of upper airway resistance evoked by hypercapnia/acidosis in in situ preparations of rats

Page generated in 0.0456 seconds