• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 70
  • 28
  • 25
  • 15
  • 14
  • 11
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 258
  • 28
  • 26
  • 25
  • 25
  • 24
  • 19
  • 18
  • 18
  • 18
  • 16
  • 16
  • 15
  • 15
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

A study of the behaviour of emulsion explosives

Allum, J. January 2009 (has links)
This study investigated the formulation and characterisation of emulsion explosives. This included the manufacture of more than 120kg of emulsion explosive of which around 105kg was used on the explosive ordnance range in over 350 individual firings. For each emulsion composition, an average of eight firings was undertaken with which to substantiate the explosive performance data. The formulation was varied to determine the effects of water content upon the physical characteristics of the emulsion. These physical effects included thermal conductivity, particle size, viscosity and the explosive performance of the emulsion. In respect of explosive performance, microballoons were added to sensitise the emulsion and the proportions of microballoons added were altered to look at their effect on velocity of detonation, sensitivity and the brisance of the emulsions. Emulsion explosives are commonly referred, in literature, as Type 11 non-ideal explosives. This is due to their non-linear behaviour with respect to the variation of velocity of detonation with density. Traditionally, when an emulsion explosive was commercially manufactured, the water content has been kept at a minimum (12-17%). This was accepted as the way to achieve the best explosive performance, based upon the belief that an emulsion with the highest concentration of active ingredients, ammonium nitrate and oil, would give the best explosive performance. This study examined a wider range of emulsion explosive water contents than has been previously studied, from 12% to 35% water. It was found, during this study, that higher water content emulsions, specifically 25% water, had a marked increase in explosive performance. The highest velocity of detonation recorded was in a 39mm diameter tube, at 25% water content with 3% microballoons, was 5558ms-1. This was some 15% higher than any other VOD recorded in this study. The high velocity of detonation, at 25% water content, was one of a number of physical characteristics in which this water content varied from the other emulsion water contents. This study endeavored to show that emulsion explosives could exhibit two differing types of explosive reaction, thermal explosion and grain burning. This was based on the velocity of detonation and plate dent data, both of which indicated that there was a change in reaction with water content. Emulsion explosives, with a high water and high microballoon content, exhibited a thermal explosion type reaction. They exhibited Type I ideal explosive behaviour, with increasing velocity of detonation with density. Lower water content emulsion explosives, displayed the more commonly expected Type 11 non-ideal behaviour and reacted in a grain burning type detonation.
32

A Study of the behaviour of emulsion explosives / Department of Environmental and Ordnance Systems

Allum, J 17 November 2009 (has links)
This study investigated the formulation and characterisation of emulsion explosives. This included the manufacture of more than 120kg of emulsion explosive of which around 105kg was used on the explosive ordnance range in over 350 individual firings. For each emulsion composition, an average of eight firings was undertaken with which to substantiate the explosive performance data. The formulation was varied to determine the effects of water content upon the physical characteristics of the emulsion. These physical effects included thermal conductivity, particle size, viscosity and the explosive performance of the emulsion. In respect of explosive performance, microballoons were added to sensitise the emulsion and the proportions of microballoons added were altered to look at their effect on velocity of detonation, sensitivity and the brisance of the emulsions. Emulsion explosives are commonly referred, in literature, as Type 11 non-ideal explosives. This is due to their non-linear behaviour with respect to the variation of velocity of detonation with density. Traditionally, when an emulsion explosive was commercially manufactured, the water content has been kept at a minimum (12-17%). This was accepted as the way to achieve the best explosive performance, based upon the belief that an emulsion with the highest concentration of active ingredients, ammonium nitrate and oil, would give the best explosive performance. This study examined a wider range of emulsion explosive water contents than has been previously studied, from 12% to 35% water. It was found, during this study, that higher water content emulsions, specifically 25% water, had a marked increase in explosive performance. The highest velocity of detonation recorded was in a 39mm diameter tube, at 25% water content with 3% microballoons, was 5558ms-1. This was some 15% higher than any other VOD recorded in this study. The high velocity of detonation, at 25% water content, was one of a number of physical characteristics in which this water content varied from the other emulsion water contents. This study endeavored to show that emulsion explosives could exhibit two differing types of explosive reaction, thermal explosion and grain burning. This was based on the velocity of detonation and plate dent data, both of which indicated that there was a change in reaction with water content. Emulsion explosives, with a high water and high microballoon content, exhibited a thermal explosion type reaction. They exhibited Type I ideal explosive behaviour, with increasing velocity of detonation with density. Lower water content emulsion explosives, displayed the more commonly expected Type 11 non-ideal behaviour and reacted in a grain burning type detonation.
33

A graph-theory-based C-space path planner for mobile robotic manipulators in close-proximity environments

Wall, D. G. January 2016 (has links)
In this thesis a novel guidance method for a 3-degree-of-freedom robotic manipulator arm in 3 dimensions for Improvised Explosive Device (IED) disposal has been developed. The work carried out in this thesis combines existing methods to develop a technique that delivers advantages taken from several other guidance techniques. These features are necessary for the IED disposal application. The work carried out in this thesis includes kinematic and dynamic modelling of robotic manipulators, T-space to C-space conversion, and path generation using Graph Theory to produce a guidance technique which can plan a safe path through a complex unknown environment. The method improves upon advantages given by other techniques in that it produces a suitable path in 3-dimensions in close-proximity environments in real time with no a priori knowledge of the environment, a necessary precursor to the application of this technique to IED disposal missions. To solve the problem of path planning, the thesis derives the kinematics and dynamics of a robotic arm in order to convert the Euclidean coordinates of measured environment data into C-space. Each dimension in C-space is one control input of the arm. The Euclidean start and end locations of the manipulator end effector are translated into C-space. A three-dimensional path is generated between them using Dijkstra’s Algorithm. The technique allows for a single path to be generated to guide the entire arm through the environment, rather than multiple paths to guide each component through the environment. The robotic arm parameters are modelled as a quasi-linear parameter varying system. As such it requires gain scheduling control, thus allowing compensation of the non-linearities in the system. A Genetic Algorithm is applied to tune a set of PID controllers for the dynamic model of the manipulator arm so that the generated path can then be followed using a conventional path-following algorithm. The technique proposed in this thesis is validated using numerical simulations in order to determine its advantages and limitations.
34

Blast Retrofit of Reinforced Concrete Columns

Lloyd, Alan Eric Walker January 2015 (has links)
Explosives place large demands on the lateral load carrying capacity of structures. If these loads are applied on columns, the high pressure transient loads from explosives can result in significant damage to the primary gravity load carrying elements. The loss of these elements, which are responsible from overall strength and stability of the structure, may cause collapse of all or parts of the structure. Therefore, it is important to mitigate the blast loads effects on columns. A comprehensive research study into the design, application, and use of different retrofit systems to mitigate damage to columns under blast loads has been undertaken. This research program, consisting of experimental testing and analytical investigation, sought out retrofits that address the strength of columns as well as those that enhance ductility are explored. Different materials and resistance mechanisms are used to increase column capacity. An experimental testing program was conducted using a shock tube to test the capacity of columns under blast loads. For this program, a total of sixteen reinforced concrete columns were constructed and the data from a further two columns from a previous study was compiled. Of these columns, a total of thirteen were retrofitted to mitigate the effects of blast. Carbon fibre reinforced polymer (CFRP) was applied to eight of the columns in the form of jacketing, longitudinal reinforcement, or the combination of the two. The other retrofits included steel prestressed confinement applied to one column, steel bracing acting as compression members applied to one column, and steel bracing acting as tension members applied to three columns. The columns were tested under incrementally increasing shock tube induced shock wave loading up to failure of the specimen or capacity of the shock tube. The performance of the retrofitted columns was compared with the control columns and against other retrofits. Quantitative comparisons of displacements and strains were made along with qualitative assessments of damage. The results indicated that all the retrofits increased capacity to the column, however, certain retrofits out performed others. The best FRP retrofit technique was found to be the combination of longitudinal and transverse FRP. The prestressed steel jacketing proved to be effective at increasing ductility capacity of the column. The compression brace retrofit was found to be effective in significantly increasing capacity of the column. The tension brace retrofits had the best performance over all the retrofits including the compression brace retrofit. The experimental data was used to validate analysis techniques to model the behaviour of the specimens. This technique reduced the columns to an equivalent single-degree-of-freedom (SDOF) system for dynamic analysis purposes. The reduction to the SDOF system was achieved by computing a resistance to lateral load and lateral displacement relationship. Each retrofit was carefully considered in this analysis including the retrofit’s possible effect on material and sectional properties as well as any force resistance mechanism that the retrofit introduces. The results of the modeling and experimental program were used to develop retrofit design guidelines. These guidelines are presented in detail in this thesis.
35

A Regional Comparison of Bomb Cyclones in the Central Plains and Western Atlantic

Steiner, Joshua C. January 2021 (has links)
No description available.
36

Evaluation of the Odor Compounds Sensed by Explosive-Detecting Canines

Lotspeich, Erica H. 09 March 2011 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Trained canines are commonly used as biological detectors for explosives; however, there are some areas of uncertainty that have led to difficulties in canine training and testing. Even though a standardized container for determining the accuracy of explosives-detecting canines has already been developed, the factors that govern the amount of explosive vapor that is present in the system are often uncertain. This has led to difficulties in comparing the sensitivity of canines to one another as well as to analytical instrumentation, despite the fact that this container has a defined headspace and degree of confinement of the explosive. For example, it is a common misconception that the amount of explosive itself is the chief contributor to the amount of odor available to a canine. In fact, odor availability depends not only on the amount of explosive material, but also the explosive vapor pressure, the rate with which the explosive vapor is transported from its source and the degree to which the explosive is confined. In order to better understand odor availability, headspace GC/MS and mass loss experiments were conducted and the results were compared to the Ideal Gas Law and Fick’s Laws of Diffusion. Overall, these findings provide increased awareness about availability of explosive odors and the factors that affect their generation; thus, improving the training of canines. Another area of uncertainty deals with the complexity of the odor generated by the explosive, as the headspace may consist of multiple chemical compounds due to the extent of explosive degradation into more (or less) volatile substances, solvents, and plasticizers. Headspace (HS) and solid phase microextraction (SPME) coupled with gas chromatography/mass spectrometry (GC/MS) were used to determine what chemical compounds are contained within the headspace of an explosive as well as NESTT (Non-Hazardous Explosive for Security Training and Testing) products. This analysis concluded that degradation products, plasticizers, and taggants are more common than their parent explosive.
37

High Explosive Radio Telemetry System

Crawford, Ted, Bracht, Roger, Johnson, Richard, Mclaughlin, Barry 10 1900 (has links)
International Telemetering Conference Proceedings / October 26-29, 1998 / Town & Country Resort Hotel and Convention Center, San Diego, California / This paper overviews the High Explosive Radio Telemetry (HERT) system, under co-development by Los Alamos National Laboratories and AlliedSignal Federal Manufacturing & Technologies. This telemetry system is designed to measure the initial performance of an explosive package under flight environment conditions, transmitting data from up to 64 sensors. It features high speed, accurate time resolution (10 ns) and has the ability to complete transmission of data before the system is destroyed by the explosion. In order to affect the resources and performance of a flight delivery vehicle as little as possible, the system is designed such that physical size, power requirements, and antenna demands are as small as possible.
38

An MCNP study of fast neutron interrogation for standoff detection of improvised explosive devices

Heider, Samuel A. January 1900 (has links)
Master of Science / Department of Mechanical and Nuclear Engineering / William L. Dunn / The signature-based radiation-scanning (SBRS) technique relies on radiation detector responses, called “signatures,” and compares them to “templates”, to differentiate targets containing nitrogen-rich explosives from those that do not. This investigation utilizes nine signatures due to inelastic-scatter and prompt-capture gamma rays from hydrogen, carbon, nitrogen, and oxygen (HCNO) as well as two neutron signatures, produced when a target is interrogated with a 14.1 MeV neutron source beam. One hundred and forty three simulated experiments were conducted using MCNP5. Signatures of 42 targets containing explosive samples (21 of RDX and 21 of Urea Nitrate), and 21 containing inert samples were compared with the signatures of 80 artificial templates through figure-of-merit analysis. A density filter, comparing targets with templates of similar average density was investigated. Both high and low-density explosives (RDX-1.8 g cm-3 and Urea Nitrate-0.69 g cm-3) were shown to be differentiated from inert materials through use of neutron and gamma-ray signature templates with sensitivity of 90.5% and specificity of 76.2%. Density Groups were identified, in which neutron signature templates, gamma-ray signature templates or the combination of neutron and gamma-ray signature templates were capable of improving inert-explosive differentiation. figure-of -merit analysis, employing the best Density Group specific templates, differentiated explosive from inert targets with 90.5% sensitivity and specificity of over 85%.
39

Photon signatures for standoff bomb detection

Loschke, Kyle W. January 1900 (has links)
Master of Science / Department of Mechanical and Nuclear Engineering / William L. Dunn / The purpose of this research was to develop a technology to quickly identify hidden explosive materials. The developed method needs to be performed at a standoff distance of approximately two meters or more, must have high sensitivity (low false-negative rate) and good specificity (low false-positive rate), and should be able to detect a minimum amount of approximately one gallon (15 lbs) of explosive material. In an effort to meet these goals, a template-matching procedure to aid in the rapid detection of hidden improvised explosive devices was investigated. Multiple photon-scattered responses are being used as a part of a multidimensional signature-based radiation scanning (SBRS) approach in an attempt to detect chemical explosives at safe, standoff distances. The SBRS approach utilizes both neutron and photon interrogation to determine if a target contains explosive material, but the focus of this thesis is on photon interrogation. Beams of photons are used to create back-streamed responses called signatures, which are dependent on the density and the composition of the target. These signatures are compared to templates, which are collections of the same signatures if the interrogated volume contained a significant amount of explosives. The signature analysis produces a single figure-of-merit. A low figure-of-merit indicates an explosive might be present in the target. Experiments have been conducted that show an explosive surrogate (fertilizer) can be distinguished from several inert materials using these photon signatures, proving these signatures to be very useful in this particular method of chemical explosive detection.
40

MCNP simulations for standoff bomb detection using neutron interrogation

Johll, Mark January 1900 (has links)
Master of Science / Department of Mechanical and Nuclear Engineering / William L. Dunn / This report investigates the feasibility of a standoff interrogation method to identify nitrogen-rich explosive samples shielded by other materials (“clutter”) using neutron beams from Cf-252 and deuterium-tritium (D-T) generator sources. Neutrons from the beams interact with materials in the target to produce inelastic-scatter gamma rays, and, after slowing down to thermal energies, prompt-capture gamma rays. By detection of these gamma rays, a response vector is formed that is used to calculate a figure-of-merit, whose value is dependent upon the contents of the target. Various target configurations, which include an inert-material shield and a sample that may or may not be explosive, were simulated using the MCNP5 code. Both shielding and collimation of 14.1-MeV neutron beams were simulated to produce effective neutron beams for target interrogation purposes and to minimize dose levels. Templates corresponding to particular target scenarios were generated, and their effectiveness at nitrogen-rich explosive identification was explored. Furthermore, methods were proposed yielding more effective templates including grouping target responses by density and composition. The results indicate that neutron-based interrogation has potential to detect shielded nitrogen-rich explosives. The research found that using a tiered filter approach, in which a sample must satisfy several template requirements, achieved the best results for identifying the explosive cyclonite (RDX). A study in which a 14.1-MeV neutron beam irradiated a target containing a shielded sample, which could either be explosive (RDX) or inert, yielded no false negatives and only 2 false positives over a large parameter space of clutter-sample combination.

Page generated in 0.0607 seconds