• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Synthesis and Characterization of Energetic Materials From Sodium Azide

Aronson, Joshua Boyer 29 November 2004 (has links)
A tetrazole is a 5-membered ring containing 4 nitrogens and 1 carbon. Due to its energetic potential and structural similarity to carboxylic acids, this ring system has a wide number of applications. In this thesis, a new and safe sustainable process to produce tetrazoles was designed that acheived high yields under mild conditions. Also, a technique was developed to form a trityl-protected tetrazole in situ. The rest of this work involved the exploitation of the energetic potential of tetrazoles. This moiety was successfully applied in polymers, ionic liquids, foams, and gels. The overall results from these experiments illustrate the fact that tetrazoles have the potential to serve as a stable alternative to the troublesome azido group common in many energetic materials. Due to these applications, the tetrazole moiety is a very important entity.
2

Non-equilibrium Thermomechanics of Multifunctional Energetic Structural Materials

Narayanan, Vindhya 28 November 2005 (has links)
Shock waves create a unique environment of high pressure, high temperature and high strain-rates. It has been observed that chemical reactions that occur in this regime are exothermic and can lead to the synthesis of new materials that are not possible under other conditions. The exothermic reaction is used in the development of binary energetic materials. These materials are of significant interest to the energetic materials community because of its capability of releasing high heat content during a chemical reaction and the relative insensitivity of these types of energetic materials. Synthesis of these energetic materials, at nano grain sizes with structural reinforcements, provides an opportunity to develop a dual functional material with both strength and energetic characteristics. Shock-induced chemical reactions pose challenges in experiment and instrumentation. This thesis is addressed to the theoretical development of constitutive models of shock-induced chemical reactions in energetic composites, formulated in the framework of non-equilibrium thermodynamics and mixture theories, in a continuum scale. Transition state-based chemical reaction models are introduced and incorporated with the conservation equations that can be used to calculate and simulate the shock-induced reaction process. The energy that should be supplied to reach the transition state has been theoretically modeled by considering both the pore collapse mechanism and the plastic flow with increasing yield stress behind the shock wave. A non-equilibrium thermodynamics framework and the associated evolution equations are introduced to account for time delays that are observed in the experiments of shock-induced or assisted chemical reactions. An appropriate representation of the particle size effects is introduced by modifying the initial energy state of the reactants. Numerical results are presented for shock-induced reactions of mixtures of Al, Fe2O3 and Ni, Al with epoxy as the binder. The theoretical model, in the continuum scale, requires parameters that should be experimentally determined. The experimental characterization has many challenges in measurement and development of nano instrumentation. An alternate approach to determine these parameters is through ab-initio calculations. Thus, this thesis has initiated ab-initio molecular dynamics studies of shock-induced chemical reactions. Specifically, the case of thermal initiation of chemical reactions in aluminum and nickel is considered.

Page generated in 0.1296 seconds