Spelling suggestions: "subject:"expoente variáveis"" "subject:"expoentes variáveis""
1 |
Soluções blow-up para equações elípticas com peso singular ou expoente variávelSouza, Luryane Ferreira de 27 February 2015 (has links)
Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Matemática, 2015. / Submitted by Ana Cristina Barbosa da Silva (annabds@hotmail.com) on 2015-04-06T18:29:07Z
No. of bitstreams: 1
2015_LuryaneFerreiradeSouza.pdf: 693916 bytes, checksum: 83f49a91836299a226c4f99c19eab0c4 (MD5) / Approved for entry into archive by Raquel Viana(raquelviana@bce.unb.br) on 2015-04-16T19:13:14Z (GMT) No. of bitstreams: 1
2015_LuryaneFerreiradeSouza.pdf: 693916 bytes, checksum: 83f49a91836299a226c4f99c19eab0c4 (MD5) / Made available in DSpace on 2015-04-16T19:13:15Z (GMT). No. of bitstreams: 1
2015_LuryaneFerreiradeSouza.pdf: 693916 bytes, checksum: 83f49a91836299a226c4f99c19eab0c4 (MD5) / Nesse trabalho consideramos o problema (veja fórmula na dissertação) onde Ω Rn é um domínio limitado ou Ω = Rn, p > 1. Vamos estudar a existência de solução para o problema (1) em dois casos: 1. Ω ≠ Rn, q(x) = q > p - 1 e a(x) é uma função não negativa, que pode ser singular na ᶿ Ω. 2. Ω = Rn, para n ≥ 3, p = 2, a(x) = 1 e q é uma função Holder contínua, q(x) ≥ 1 para ||x|| ≤ R e 0 < q(x) ≤ 1 para ||x|| ≥ R, onde R ≥ 0 é uma constante. Além disso, estudamos a unicidade e comportamento na Ω para a solução do caso 1. / In this work we consider the problem (veja fórmula na dissertação) where Ω Rn is a bounded domain or Ω = Rn, p > 1. We will study existence of solution for
problem (2) in two cases: 1. Ω ≠ Rn, q(x) = q > p - 1 and a(x) is a nonnegative function, wich can be singular on ᶿΩ. 2. Ω = Rn, n ≥ 3, p = 2, a(x) = 1 and q is Holder continuous function, q(x) ≥ 1 for ||x|| ≤ R and 0 < q(x) ≤ 1 for ||x|| ≥ R, where R ≥ 0 is a constant. Moreover, we study uniqueness and behavior on ᶿΩ for solution of the first case.
|
Page generated in 0.068 seconds