• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 4
  • 2
  • 1
  • Tagged with
  • 25
  • 25
  • 12
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Noninformative priors for some models useful in reliability and survival analysis /

Lee, Gunhee, January 1996 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 1996. / Typescript. Vita. Includes bibliographical references (leaves 105-108). Also available on the Internet.
12

Noninformative priors for some models useful in reliability and survival analysis

Lee, Gunhee, January 1996 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 1996. / Typescript. Vita. Includes bibliographical references (leaves 105-108). Also available on the Internet.
13

Potential based prediction markets : a machine learning perspective

Hu, Jinli January 2017 (has links)
A prediction market is a special type of market which offers trades for securities associated with future states that are observable at a certain time in the future. Recently, prediction markets have shown the promise of being an abstract framework for designing distributed, scalable and self-incentivized machine learning systems which could then apply to large scale problems. However, existing designs of prediction markets are far from achieving such machine learning goal, due to (1) the limited belief modelling power and also (2) an inadequate understanding of the market dynamics. This work is thus motivated by improving and extending current prediction market design in both aspects. This research is focused on potential based prediction markets, that is, prediction markets that are administered by potential (or cost function) based market makers (PMM). To improve the market’s modelling power, we first propose the partially-observable potential based market maker (PoPMM), which generalizes the standard PMM such that it allows securities to be defined and evaluated on future states that are only partially-observable, while also maintaining the key properties of the standard PMM. Next, we complete and extend the theory of generalized exponential families (GEFs), and use GEFs to free the belief models encoded in the PMM/PoPMM from always being in exponential families. To have a better understanding of the market dynamics and its link to model learning, we discuss the market equilibrium and convergence in two main settings: convergence driven by traders, and convergence driven by the market maker. In the former case, we show that a market-wise objective will emerge from the traders’ personal objectives and will be optimized through traders’ selfish behaviours in trading. We then draw intimate links between the convergence result to popular algorithms in convex optimization and machine learning. In the latter case, we augment the PMM with an extra belief model and a bid-ask spread, and model the market dynamics as an optimal control problem. This convergence result requires no specific models on traders, and is suitable for understanding the markets involving less controllable traders.
14

Integrated Waveform-Agile Multi-Modal Track-before-Detect Algorithms for Tracking Low Observable Targets

January 2012 (has links)
abstract: In this thesis, an integrated waveform-agile multi-modal tracking-beforedetect sensing system is investigated and the performance is evaluated using an experimental platform. The sensing system of adapting asymmetric multi-modal sensing operation platforms using radio frequency (RF) radar and electro-optical (EO) sensors allows for integration of complementary information from different sensors. However, there are many challenges to overcome, including tracking low signal-to-noise ratio (SNR) targets, waveform configurations that can optimize tracking performance and statistically dependent measurements. Address some of these challenges, a particle filter (PF) based recursive waveformagile track-before-detect (TBD) algorithm is developed to avoid information loss caused by conventional detection under low SNR environments. Furthermore, a waveform-agile selection technique is integrated into the PF-TBD to allow for adaptive waveform configurations. The embedded exponential family (EEF) approach is used to approximate distributions of parameters of dependent RF and EO measurements and to further improve target detection rate and tracking performance. The performance of the integrated algorithm is evaluated using real data from three experimental scenarios. / Dissertation/Thesis / M.S. Electrical Engineering 2012
15

Implementing Bayesian Inference with Neural Networks

Sokoloski, Sacha 26 July 2019 (has links)
Embodied agents, be they animals or robots, acquire information about the world through their senses. Embodied agents, however, do not simply lose this information once it passes by, but rather process and store it for future use. The most general theory of how an agent can combine stored knowledge with new observations is Bayesian inference. In this dissertation I present a theory of how embodied agents can learn to implement Bayesian inference with neural networks. By neural network I mean both artificial and biological neural networks, and in my dissertation I address both kinds. On one hand, I develop theory for implementing Bayesian inference in deep generative models, and I show how to train multilayer perceptrons to compute approximate predictions for Bayesian filtering. On the other hand, I show that several models in computational neuroscience are special cases of the general theory that I develop in this dissertation, and I use this theory to model and explain several phenomena in neuroscience. The key contributions of this dissertation can be summarized as follows: - I develop a class of graphical model called nth-order harmoniums. An nth-order harmonium is an n-tuple of random variables, where the conditional distribution of each variable given all the others is always an element of the same exponential family. I show that harmoniums have a recursive structure which allows them to be analyzed at coarser and finer levels of detail. - I define a class of harmoniums called rectified harmoniums, which are constrained to have priors which are conjugate to their posteriors. As a consequence of this, rectified harmoniums afford efficient sampling and learning. - I develop deep harmoniums, which are harmoniums which can be represented by hierarchical, undirected graphs. I develop the theory of rectification for deep harmoniums, and develop a novel algorithm for training deep generative models. - I show how to implement a variety of optimal and near-optimal Bayes filters by combining the solution to Bayes' rule provided by rectified harmoniums, with predictions computed by a recurrent neural network. I then show how to train a neural network to implement Bayesian filtering when the transition and emission distributions are unknown. - I show how some well-established models of neural activity are special cases of the theory I present in this dissertation, and how these models can be generalized with the theory of rectification. - I show how the theory that I present can model several neural phenomena including proprioception and gain-field modulation of tuning curves. - I introduce a library for the programming language Haskell, within which I have implemented all the simulations presented in this dissertation. This library uses concepts from Riemannian geometry to provide a rigorous and efficient environment for implementing complex numerical simulations. I also use the results presented in this dissertation to argue for the fundamental role of neural computation in embodied cognition. I argue, in other words, that before we will be able to build truly intelligent robots, we will need to truly understand biological brains.
16

Statistical Multiscale Segmentation: Inference, Algorithms and Applications

Sieling, Hannes 22 January 2014 (has links)
No description available.
17

Estimating posterior expectation of distributions belonging to exponential and non exponential families

Begum, Munni January 2001 (has links)
Bayesian principle is conceptually simple and intuitively plausible to carry out but its numerical implementation is not always straightforward. Most of the times we have posterior distributions in terms of complicated analytical funs ions and be known only up to a multiplicative constant. Hence it becomes computationally difficult to attain the marginal densities and the moments of the posterior distributions in closed form. In the present study the leading methods, both analytical and numerical, for implementing Bayesian inference has been explored. In particular, the non-iterative Monte Carlo method known as Importance Sampling has been applied to approximate the posterior expectations of the Lognormal and Cauchy distributions, belonging to the Exponential family and the non-Exponential family of distributions respectively. Sample values from these distributions have been simulated through computer programming. Calculations are done mostly by C++ programming language and Mathematica. / Department of Mathematical Sciences
18

Multiscale Scanning in Higher Dimensions: Limit theory, statistical consequences and an application in STED microscopy

König, Claudia Juliane 26 June 2018 (has links)
No description available.
19

Sur les modèles Tweedie multivariés / On multi variate tweedie models

Cuenin, Johann 06 December 2016 (has links)
Après avoir fait un rappel sur les généralités concernant les familles exponentielles naturelles et  les lois Tweedie univariées qui en sont un exemple particulier, nous montrerons comment étendre ces lois au cas multivarié. Une première construction permettra de définir des vecteurs aléatoires Tweedie paramétrés pas un vecteur de moyenne et une matrice de dispersion. Nous montrerons que les corrélations entre les lois marginales peuvent être contrôlées et varient entre -1 et 1. Nous verrons aussi que ces vecteurs ont quelques propriétés communes avec les vecteurs gaussiens. Nous en donnerons une représentation matricielle qui permettra d'en simuler des observations. La seconde construction permettra d'introduire les modèles Tweedie multiples constitués d'une variable Tweedie dont l'observation sera la dispersion des autres marges, toutes de lois Tweedie elles aussi. Nous donnerons la variance généralisée de ces lois et montrerons que cette dernière peut-être estimée efficacement. Enfin, nous verrons que, modulo certaines restrictions, nous pourrons donner une caractérisation par la fonction de variance généralisée des familles exponentielles naturelles générées par ces lois. / After a reminder of the natural exponential families framework and the univariate Tweedie distributions, we build two multivariate extension of the latter. A first construction, called Tweedie random vector, gives a multivariate Tweedie distribution parametrized by a mean vector and a dispersion matrix. We show that the correlations between the margins can be controlled and vary between -1 and 1. Some properties shared with the well-known Gaussian vector are given. By giving a matrix representation, we can simulate observations of Tweedie random vectors. The second construction establishes the multiple stable Tweedie models. They are vectors of which the first component is Tweedie and the others are independant Tweedie, given the first one, and with dispersion parameter given by an observation of the first component. We give the generalized variance and show that it is a product of powered component of the mean and give an efficient estimator of this parameter. Finally, we can show, with some restrictions, that the generalized variance is a tool which can be used for characterizing the natural exponential families generated by multiple stable Tweedie models.
20

Contribution des familles exponentielles en traitement des images / Contribution of the exponential families to image processing

Ben Arab, Taher 26 April 2014 (has links)
Cette thèse est consacrée à l'évaluation des familles exponentielles pour les problèmes de la modélisation des bruits et de la segmentation des images couleurs. Dans un premier temps, nous avons développé une nouvelle caractérisation des familles exponentielles naturelles infiniment divisible basée sur la fonction trace de la matrice de variance covariance associée. Au niveau application, cette nouvelle caractérisation a permis de détecter la nature de la loi d'un bruit additif associé à un signal où à une image couleur. Dans un deuxième temps, nous avons proposé un nouveau modèle statistique paramétrique mulltivarié basé sur la loi de Riesz. La loi de ce nouveau modèle est appelée loi de la diagonale modifiée de Riesz. Ensuite, nous avons généralisé ce modèle au cas de mélange fini de lois. Enfin, nous avons introduit un algorithme de segmentation statistique d'image ouleur, à travers l'intégration de la méthode des centres mobiles (K-means) au niveau de l'initialisation pour une meilleure définition des classes de l'image et l'algorithme EM pour l'estimation des différents paramètres de chaque classe qui suit la loi de la diagonale modifiée de la loi de Riesz. / This thesis is dedicated to the evaluation of the exponential families for the problems of the noise modeling and the color images segmentation. First, we developed a new characterization of the infinitely divisible natural exponential families based on the trace function of the associated variance-covariance matrix. At the application level, this new characterization allowed to detect the nature of the law of an additive noise associated with a signal or with a color image. Second, we proposed a new parametric multivariate statistical model based on Riesz's distribution. The law of this new model is called the modified diagonal Riesz distribution. Then we generalized this model in the case of a finished mixture of distibution. Finally we introduced an algorithm of statistical segmentation of color images through the integration of the k-means method at the level of the initialization for a better definition of the image classes and the algorithm EM for the estimation of the different parameters of every class which follows the modified diagonal Riesz distribution.

Page generated in 0.0911 seconds