• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 1
  • 1
  • Tagged with
  • 9
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Nuclear export of actin: A biochemical and structural perspective

Gencalp, Kevser 24 October 2014 (has links)
No description available.
2

Structural and functional investigation of cargo recognition by exportins

Aksu, Metin 17 November 2015 (has links)
No description available.
3

Defining the nuclear localization and functions of actin in Drosophila oogenesis

Kelpsch, Daniel J. 01 January 2018 (has links)
While actin was discovered in the nucleus over 50 years ago, research lagged for decades due to strong skepticism. The revitalization of research into nuclear actin occurred after it was found that cellular stresses both induce the nuclear localization and alter the structure of nuclear actin. These studies provided the first hints that actin has a nuclear function. Subsequently, it was established that the nuclear import and export of actin is highly regulated. While the structures of nuclear actin remain unclear, it can function as monomers, polymers, and even rods. Furthermore, even within a given structure, distinct pools of nuclear actin that can be differentially labeled have been identified. Numerous mechanistic studies have uncovered an array of functions for nuclear actin. It regulates the activity of RNA polymerases, as well as specific transcription factors. Actin also modulates the activity of several chromatin remodeling complexes and histone deacetylases, to ultimately impinge on transcriptional programing and DNA damage repair. Further, nuclear actin mediates chromatin movement and organization. It has roles in meiosis and mitosis, and these functions may be functionally conserved from ancient bacterial actin homologs. The structure and integrity of the nuclear envelope and sub-nuclear compartments are also regulated by nuclear actin. Furthermore, nuclear actin contributes to human diseases like cancer, neurodegeneration, and myopathies. The work presented in this thesis aims to describe the nuclear localization and functions of actin during Drosophila oogenesis. Drosophila oogenesis, i.e. follicle development, provides a developmental system with which to study nuclear actin. Follicles are composed of roughly 1000 somatic follicle cells and 16 germline cells, including 15 nurse or support cells and a single oocyte. Follicles progress through a series of 14 morphological stages, from the germanium to Stage 14 (S14). Ovary staining using the anti-actin C4 antibody reveals one pool of nuclear actin during early oogenesis (germarium through S9), including in the germline and somatic stem cells, a subset of mitotic follicles cells, and a subset of nurse cells during S5-S9. Cofilin and Profilin, which regulate the nuclear import and export of actin, also localize to the nuclei. Expression of GFP-tagged actin results in nuclear actin rod formation. These findings indicate that nuclear actin is tightly regulated during oogenesis. One factor mediating this regulation is Fascin. Overexpression of Fascin enhances nuclear GFP-Actin rod formation, and Fascin colocalizes with the rods. Loss of Fascin reduces, whereas overexpression of Fascin increases, the frequency of nurse cells with high levels of C4 nuclear actin, but does not alter the overall nuclear level of actin within the ovary. These data suggest that Fascin regulates the ability of specific cells to accumulate C4 nuclear actin. Evidence indicates that Fascin positively regulates C4 nuclear actin through Cofilin. Indeed, loss of Fascin results in decreased nuclear Cofilin. In addition, Fascin and Cofilin genetically interact, as double heterozygotes exhibit a reduction in the number of nurse cells with high C4 nuclear actin levels. Thus, through Cofilin, Fascin positively regulates C4 nuclear actin. These studies identified Fascin as a novel means of nuclear actin regulation. Having established Drosophila oogenesis as an in vivo, developmental system to study nuclear actin, I sought to identify the functions of nuclear actin. To uncover the functions of nuclear actin, I manipulate nuclear actin levels by blocking its nuclear import (Importin 9) and export (Exportin 6). Knockdown of Importin 9, results in female sterility and defects within the germarium, supporting a role for nuclear actin in stemness. Additionally, reduced Importin 9 levels cause chromatin organization defects. Loss or knockdown of Exportin 6 causes reduced female fertility, abnormal nucleolar morphology, alterations in the nuclear envelope, and aberrant heterochromatin status. These data suggest several functions for nuclear actin in the ovary: nuclear actin is essential for stem cell differentiation, proper chromatin organization and dispersal, nucleolar structure and likely function, nuclear envelope morphology, heterochromatin status and likely gene expression. Ultimately, nuclear actin is absolutely required for the highly conserved process of follicle development. These studies provide insight into the regulation and function of nuclear actin in Drosophila oogenesis. The data presented here indicate that nuclear actin is critical for chromatin organization, nucleolar morphology, nuclear envelope shape, and heterochromatin status and suggest that nuclear actin ultimately impacts transcription, a process essential for all cells. Considering the high level of sequence and functional conservation of actin, studies in Drosophila oogenesis will provide insight into the conserved functions of nuclear actin in follicle development across higher organisms. The study of nuclear actin in the many cell types of the Drosophila ovary provide insight into the functions of nuclear actin for all cell types across evolution. Further, aberrant nuclear actin regulation has been implicated in several disease states. The studies in Drosophila provide insight into the regulation of nuclear actin and how misregulation contributes to disease states. Together, the data presented in this thesis advance our understanding of the nuclear localization and functions of actin.
4

脊椎動物におけるSRP RNAの核外輸送の研究

竹岩, 俊彦 23 March 2015 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第18834号 / 理博第4092号 / 新制||理||1588(附属図書館) / 31785 / 京都大学大学院理学研究科生物科学専攻 / (主査)教授 大野 睦人, 教授 阿形 清和, 教授 森 和俊 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
5

Novel therapies for treatment of Ph+ acute leukemias

Walker, Christopher James 27 September 2013 (has links)
No description available.
6

Orientia tsutsugamushi secretes two ankyrin repeat-containing effectors via a type 1 secretion system to inhibit host NF-κB function

Evans, Sean M. 01 January 2017 (has links)
Scrub typhus is a potentially fatal infection that threatens one billion persons in the Asia-Pacific region and is caused by the obligate intracellular bacterium, Orientia tsutsugamushi. How this organism facilitates its intracellular survival and pathogenesis is poorly understood. Intracellular bacterial pathogens utilize the Type 1 (T1SS) or Type 4 secretion system (T4SS) to translocate ankyrin repeat-containing proteins (Anks) into the host cell to modulate host cell processes. The O. tsutsugamushi genome encodes one of the largest known bacterial Ank libraries as well as Type 1 and Type 4 secretion systems (T1SS and T4SS), which are expressed during infection. In silico analyses of the Anks’ C-termini revealed that they possess characteristics of T1SS secretion signals. Escherichia coli expressing a functional T1SS was able to secrete chimeric hemolysin proteins bearing the C-termini of 19 of 20 O. tsutsugamushi Anks. In addition to infecting endothelial cells, O. tsutsugamushi infects professional phagocytes. To better understand why these innate immune cells are unable to eliminate O. tsutsugamushi, we addressed the activity of host NF-κB proinflammatory transcription factor. Screening of O. tsutsugamushi infected cells at an MOI of 1 revealed inhibition of NF-κB nuclear accumulation as early as 8 hours in HeLa and bone-marrow derived macrophage cells. When stimulating infected cells with TNF-α, IκBα degradation still occurs, however NF-κB dependent gene transcription remains downregulated. Immunofluorescence microscopic analysis of TNF-α treated cells ectopically expressing all O. tsutsugamushi Anks revealed that two nuclear trafficking Anks, Ank1 and Ank6, result in a significant decrease in NF-κB nuclear accumulation. Additionally, these Anks also significantly inhibited NF-κB dependent gene transcription. Co-immunoprecipitation experiments revealed that both Anks interact with importin-β1, exportin-1, and the p65 NF-κB subunit. Treating cells with importazole significantly reduces the nuclear accumulation of Ank1 and Ank6. Finally, treating infected cells or cells ectopically expressing Ank1 or Ank6 with leptomycin B resulted in restoration of NF-κB nuclear accumulation. With these data, we propose that O. tsutsugamushi secretes Ank1 and Ank6 to initially interact with importin-β1, which permits their nuclear entry where they then interact with NF-κB and subsequently exportin-1 to prevent NF-κB nuclear accumulation.
7

Development of Phyllanthusmin Derivatives as Anticancer Agents: Pharmacological Optimization and Mechanistic Insight

Huntsman, Andrew C. 04 October 2019 (has links)
No description available.
8

Structural and functional analysis of exportin-cargo recognition / Strukturelle und funktionelle Analyse der Exportin-Kargo-Erkennung

Güttler, Thomas 17 September 2010 (has links)
No description available.
9

Physiopathologie du lymphome à cellules du manteau : de la mécanistique aux modèles précliniques / Physiopathology of mantle cell lymphoma from mechanistic to preclinical models

Body, Simon 29 November 2017 (has links)
Le lymphome à cellules du manteau (LCM) est une hémopathie maligne B mature, appartenant à la famille des lymphomes non hodgkiniens. Le LCM est caractérisé par la translocation t(11;14)(q13;q32) qui provoque une expression aberrante de cycline D1. C’est une pathologie rare mais à haut risque de rechute, et qui reste le plus souvent incurable suite à l’apparition de clones chimiorésistants. L’acquisition de résistance est intimement liée aux interactions entre les cellules tumorales et leur microenvironnement. Afin de mimer de la manière la plus pertinente possible ces interactions, nous avons mis en place un modèle murin de xénogreffe en utilisant les lignées cellulaires de LCM JeKo1, REC1, Z138 et Granta-519 que nous avons modifiées afin qu’elles expriment un fluorophore (GFP ou m-cherry) et/ou le gène codant pour la luciférase. Après injection aux souris du substrat de la luciférase, la luciférine, nous sommes en mesure de suivre au cours du temps la progression tumorale. Nous pouvons également évaluer le degré d’infiltration tumorale dans la moelle osseuse, la rate, le cerveau et le sang après euthanasie des animaux, par des techniques de cytométrie en flux et d’immunocytochimie. Ce modèle nous a permis de montrer l’intérêt thérapeutique d’un inhibiteur de l’exportine 1 (XPO1) : le KPT 330 (ou selinexor) qui est capable de contenir cycline D1 uniquement au niveau nucléaire. Nous avons montré que la localisation subcellulaire de cycline D1, est retrouvée majoritairement cytoplasmique dans certaines lignées cellulaires de LCM (2/7) et chez un certain nombre de patients (6/42, 14%), et est associée à un fort potentiel d’invasion, de migration et à un phénotype agressif. Par ailleurs, grâce à ce modèle, nous avons pu objectiver le manque d’efficacité in vivo d’agonistes aux récepteurs aux œstrogènes de type β (ER β). Ces récepteurs, présents sur les lymphocytes B étaient supposés inhiber la prolifération cellulaire et provoquer la mort des cellules par apoptose. L’utilisation de deux agonistes des ER β, le diarylpropionitrile (DPN) et l’ERB-041 a montré une absence d’effet de ces molécules, lorsque les cellules tumorales sont au contact de leur microenvironnement. D’autre part, afin de mieux comprendre les mécanismes de résistance aux chimiothérapies, nous avons étudié la résistance de la lignée cellulaire REC-1 traitée par des agents génotoxiques. Nous avons montré que cette lignée présentait une anomalie de dégradation de cycline D1 associée à une activité diminuée du protéasome 26S. Enfin, nous avons montré dans des travaux préliminaires que la protéine fused in sarcoma (FUS) pourrait, lorsqu’elle est associée à cycline D1, être capable de réguler les voies de réparation des dommages à l’ADN. Des anomalies de ces voies induisent une grande instabilité génétique responsable de l’échappement des tumeurs aux traitements, le ciblage de FUS pourrait par conséquent présenter un intérêt thérapeutique.Pris dans leur ensemble, ces résultats permettent de renforcer ou d’infirmer l’intérêt de certaines cibles thérapeutiques dans l’espoir de pouvoir continuer à améliorer la prise en charge des patients. Ils fournissent également un outil pour l’évaluation de nouvelles molécules dans un modèle murin prenant en compte les interactions entre la cellule tumorale et son microenvironnement. / Mantle cell lymphoma (MCL) is a mature malignant hemopathy, belonging to the non-Hodgkin's lymphoma family. The MCL is characterized by the translocation t(11;14)(q13;q32) which causes an aberrant expression of cyclin D1. It is a rare disease but at high risk of relapse, and it is most often incurable due to the appearance of chemoresistant clones. The acquisition of resistance is intimately linked to the interactions between the tumor cells and their microenvironment. In order to mimic, in the most relevant way, these interactions, we have implemented a mouse xenograft model using the MCL cell lines JeKo1, REC1, Z138 and Granta-519 which we have modified so that they express a fluorophore (GFP or m-cherry) and / or the gene encoding the luciferase. After injection to the mice of the luciferase substrate, luciferin, we are able to follow over time the tumor progression. We can also assess the degree of tumor infiltration in bone marrow, spleen, brain and blood after euthanasia of animals, by flow cytometry and immunocytochemistry. This model allowed us to show the therapeutic interest of an inhibitor of exportin 1 (XPO1): the KPT 330 (or selinexor) which is able to contain cyclin D1 only on the nuclear level. We have shown that the subcellular localization of cyclin D1 is mainly cytoplasmic in some LCM (2/7) cell lines and in a number of patients (6/42, 14%), and is associated with a high potential Invasion, migration and an aggressive phenotype. Moreover, thanks to this model, we have been able to objectify the in vivo lack of efficacy of agonists to β-type estrogen receptors (ER β). These receptors, present on B lymphocytes, were thought to inhibit cell proliferation and cause cell death by apoptosis. The use of two ER β agonists, diarylpropionitrile (DPN) and ERB-041 showed an absence of effect of these molecules, when the tumor cells are in contact with their microenvironment. On the other hand, in order to better understand the mechanisms of resistance to chemotherapies, we studied the resistance of the REC-1 cell line treated with genotoxic agents. We have shown that this line has an abnormality of cyclin D1 degradation associated with decreased activity of the 26S proteasome. Finally, we have shown in preliminary work that the fused in sarcoma protein (FUS) could, when associated with cyclin D1, be able to regulate the repair pathways of DNA damage. Abnormalities of these pathways induce a great genetic instability responsible for the escape of tumors to treatments, the targeting of FUS could therefore be of therapeutic interest.Taken as a whole, these results reinforce or invalidate the interest of certain therapeutic targets in the hope of continuing to improve the management of patients. They also provide a tool for evaluating new molecules in a murine model that takes into account the interactions between the tumor cell and its microenvironment.

Page generated in 0.0353 seconds