Spelling suggestions: "subject:"exposants dde colder"" "subject:"exposants dde bolder""
1 |
Analyse de régularité locale, quelques applications à l'analyse multifractaleSeuret, Stéphane 05 November 2003 (has links) (PDF)
Il est fondamental, dans beaucoup de domaines (étude de la<br />turbulence , traitement du signal), mais également d'un point de vue théorique, de pouvoir détecter et caractériser les singularités d'une fonction ou d'une distribution. Pour mesurer la régularité autour d'un point $x_0$ d'une fonction $f$, on utilise souvent l'exposant ponctuel de \ho de $f$ en $x_0$, noté $\alp(x_0)$. Mais cet exposant n'est pas suffisant pour décrire entièrement les comportements locaux.<br /><br />L'exposant de \ho local, noté $\all(x_0)$, permet de compléter les<br />informations procurées par $\alp(x_0)$. Les relations entre les<br />fonctions $x\ra \all(x)$ et $x\ra\alp(x)$ sont complètement mises a<br />jour.<br /><br />Les espaces 2-microlocaux, notés $\css'$, permettent de généraliser la notion d'exposant de régularité. Une caractérisation temporelle des espaces $\css'$ pour les fonctions $C^\ep$ ($\ep>0$) est démontrée. Cela s'avère utile en traitement du signal, car accessible numériquement (FRACLAB).<br /><br />Les espaces $\css'$ permettent d'associer à un point non plus un ou<br />plusieurs exposants, mais une courbe dans $\R^2$ appelée frontière<br />2-microlocale. Cette dernière englobe les exposants cités plus<br />haut, et donne une description géométrique de la régularité<br />locale. On montre que la frontière 2-microlocale d'une distribution $f$ en $x_0$ est la transformée de Legendre d'une fonction $\chi_(x_0)$ appelée (\em spectre 2-microlocal): on parle du formalisme 2-microlocal. $\chi_(x_0)$ est lié au comportement des coefficients d'ondelettes de $f$ autour de $x_0$. L'étude de<br />$\chi_(x_0)$ et du formalisme 2-microlocal s'avère fructueuse: les<br />liens avec les exposants sont explicités, des propriétés<br />nouvelles de la régularité sont mises en évidence. Le calcul de<br />$\chi_(x_0)$ est effectué pour plusieurs fonctions classiques ou<br />originales.<br /><br />Deux applications du spectre 2-microlocal à l'analyse multifractale<br />sont présentées. Nous proposons la construction de fonctions et<br />processus multifractals. étant donnée une mesure de Borel positive<br />$\mu$ et deux réels positifs $s_0$ et $p_0$ vérifiant<br />$s_0-1/p_0>0$, on étudiera la fonction $F_\mu$ <br />$$F_\mu(x)=\sum_(j\geq 0) \sum_(k\in \mathbb(Z)) \pm<br />2^(-j(s_0-\frac(1)(p_0))) |\mu\big ([k2^(-j),(k+1)2^(-j))\big<br />)|^(\frac(1)(p_0)) \psijk(x).$$ Si $\mu$ satisfait un certain<br />formalisme multifractal (proche du formalisme usuel) pour les mesures, alors la fonction $F_\mu$ satisfait au formalisme multifractal pour les fonctions. Ce résultat s'applique aux grandes classes de mesures multifractales: quasi-Bernoulli, cascades de Mandelbrot, ... En particulier, on résout ainsi la conjecture de Arnéodo, Bacry, Muzy sur la valeur du spectre de leurs cascades aléatoires d'ondelettes, qui servaient de modèle à un fluide turbulent.<br /><br />Enfin la relation entre présence d'oscillations et validité du<br />formalisme multifractal est étudiée. Ce travail a une conséquence<br />inattendue: on montre qu'un seuillage effectué sur les coefficients<br />d'ondelettes peut créer des singularités oscillantes et faire<br />échouer le formalisme.
|
Page generated in 0.0458 seconds