• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 1
  • Tagged with
  • 12
  • 12
  • 8
  • 6
  • 6
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Geomorphological and Sedimentological Investigation into the Glacial Deposits of the Lake Clearwater Basin, Mid Canterbury, New Zealand.

Evans, Michael Douglas January 2008 (has links)
This thesis presents the findings of a combined geomorphological, sedimentological and geochronological investigation into the glacial history of the Clearwater Basin, Mid Canterbury, New Zealand. The study demonstrates that a thick wedge of glacial and paraglacial sediments are preserved in the valley. These are >100m thick and preserve evidence of at least 3 glacial phases (>180ka). The study presents a new and detailed geomorphology map for the Clearwater valley and adjacent areas and has added 17 new recessional positions to the local glacial record. Surface Exposure Dating (SED) has been used to directly date the moraines of the Clearwater Basin providing the first detailed chronology for glacial moraine in this area. In total 31 cosmogenic ages from 9 separate moraines are presented. The results demonstrate that the LGM advance is the Trinity moraine of Mabin (1980) and not the Hakatere moraine as previously assumed and that the LGM was achieved at or about 23ka. The Clearwater glacier receded up valley between 23 and 13ka with some indication of accelerated retreat after c.16ka. The correlation to the adjacent Lake Heron Valley is also revised.
2

Rapid thinning of the Laurentide Ice Sheet in coastal Maine, USA during late Heinrich Stadial 1:

Koester, Alexandria Jo January 2017 (has links)
Thesis advisor: Jeremy D. Shakun / Few data are available to infer the thinning rate of the Laurentide Ice Sheet (LIS) through the last deglaciation, despite its importance for constraining past ice sheet response to climate warming. We measured 31 cosmogenic 10Be exposure ages in samples collected on coastal mountainsides in Acadia National Park and from the slightly inland Pineo Ridge moraine complex, a ~100-km-long glaciomarine delta, to constrain the timing and rate of LIS thinning and subsequent retreat in coastal Maine. Samples collected along vertical transects in Acadia National Park have indistinguishable exposure ages over a 300 m range of elevation, suggesting that rapid, century-scale thinning occurred at 15.2 ± 0.7 ka, similar to the timing of abrupt thinning inferred from cosmogenic exposure ages at Mt. Katahdin in central Maine (Davis et al., 2015). This rapid ice sheet surface lowering, which likely occurred during the latter part of the cold Heinrich Stadial 1 event (19-14.6 ka), may have been due to enhanced ice-shelf melt and calving in the Gulf of Maine, perhaps related to regional oceanic warming associated with a weakened Atlantic Meridional Overturning Circulation at this time. The ice margin subsequently stabilized at the Pineo Ridge moraine complex until 14.5 ± 0.7 ka, near the onset of Bølling Interstadial warming. Our 10Be ages are substantially younger than marine radiocarbon constraints on LIS retreat in the coastal lowlands, suggesting that the deglacial marine reservoir effect in this area was ~1,200 14C years, perhaps also related to the sluggish Atlantic Meridional Overturning Circulation during Heinrich Stadial 1. / Thesis (MS) — Boston College, 2017. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Earth and Environmental Sciences.
3

A Geomorphological and Sedimentological Investigation into the Glacial Deposits of the Lake Clearwater Basin, Mid Canterbury, New Zealand.

Evans, Michael Douglas January 2008 (has links)
This thesis presents the findings of a combined geomorphological, sedimentological and geochronological investigation into the glacial history of the Clearwater Basin, Mid Canterbury, New Zealand. The study demonstrates that a thick wedge of glacial and paraglacial sediments are preserved in the valley. These are >100m thick and preserve evidence of at least 3 glacial phases (>180ka). The study presents a new and detailed geomorphology map for the Clearwater valley and adjacent areas and has added 17 new recessional positions to the local glacial record. Surface Exposure Dating (SED) has been used to directly date the moraines of the Clearwater Basin providing the first detailed chronology for glacial moraine in this area. In total 31 cosmogenic ages from 9 separate moraines are presented. The results demonstrate that the LGM advance is the Trinity moraine of Mabin (1980) and not the Hakatere moraine as previously assumed and that the LGM was achieved at or about 23ka. The Clearwater glacier receded up valley between 23 and 13ka with some indication of accelerated retreat after c.16ka. The correlation to the adjacent Lake Heron Valley is also revised.
4

Comparison of dating methods for paleoglacial reconstruction in Central Asia

Gribenski, Natacha January 2016 (has links)
Reconstruction of former Central Asian glaciers extents can provide valuable information about past atmospheric circulation variations. These extents, often marked by terminal moraines, need to be chronologically constrained. Cosmogenic nuclide exposure (CNE) dating is widely used to directly date moraines. In addition, there is increasing interest on using optically stimulated luminescence (OSL) techniques for dating glacial landforms. This thesis focuses on the methodological aspects of directly dating glacial landforms to perform paleoglacial reconstructions in Central Asia, with an emphasis on OSL dating. For OSL dating of sediments from glacial settings, it is important to measure the luminescence signal at the single grain scale, because the sediments are likely affected by partial bleaching due to short light exposure during glacial or glaciofluvial transport. The use of an Electron Multiplying Charges Coupled Device (EMCCD)-based imaging system for single grain OSL measurements would offer larger flexibility in light stimulation and sediment type, compared to the current Single Grain Risø reader. An automated image processing procedure has been developed to compensate for sample carrier displacement over repeated measurements and for attributing pixels to each grain for signal integration when using this imaging system. However, significant cross talk contamination, demonstrated by laboratory and simulation experiments, prohibits accurate single grain luminescence measurements. Preliminary experiments using a basic image processing algorithm show good potential for software correction solutions. Paleoglacial reconstructions conducted in the Altai Mountains, Central Asia, using both CNE and OSL dating demonstrate that luminescence measurements of glaciofluvial sediments performed at the multi-grain scale result in large age overestimates, and that single grain measurements allow for more accurate dating of glacial landforms. However, uncertainties remain that are related to the model used for extracting equivalent doses for well-bleached grains and to fading corrections when using feldspar minerals. The timing of glaciation can be inferred from scattered CNE moraine boulder ages if most of the ages are concentrated within a few thousand years, with only few ages clearly older or younger. Overall, combining CNE and OSL techniques for dating a glacial landform is a powerful approach for producing robust glacial chronologies, despite uncertainties inherent to each technique. Paleoglacial reconstructions from the Altai Mountains indicate Marine Isotope Stage (MIS) 2 and MIS 4/late MIS 5 local Last Glacial Maximums. In Central Asia, in addition to a regional MIS 2 glaciation, previous studies indicate a period of major glacial advances during MIS 3 that is out of phase with global ice volume records. However, most MIS 3 glacial chronologies from Central Asia are based on too few or too heavily scattered CNE data sets, or on OSL or Electron Spin Resonance (ESR) ages for which partial bleaching has not been properly investigated. Hence, at this stage, chronological evidence is insufficient to demonstrate a regional MIS 3 glaciation in Central Asia. Surge-related glacial features identified in the Russian Altai also highlight the importance of conducting detailed geomorphology and sedimentology studies to understand former ice dynamics, which is essential for inferring appropriate paleoclimate information from paleoglacial reconstructions. / <p>At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 4: Manuscript.</p>
5

Reconstructing High-frequency Holocene Glacial Chronostratigraphies in the Himalayan-Tibetan Orogen

Saha, Sourav January 2018 (has links)
No description available.
6

Surface Exposure Dating of Stream Terraces in the Chinese Pamir: Glacial Chronology and Paleoclimatic Implications

Kirby, Benjamin Thomas 25 June 2008 (has links)
No description available.
7

Relict non-glacial surfaces and autochthonous blockfields in the northern Swedish mountains

Goodfellow, Bradley W. January 2008 (has links)
<p>Relict non-glacial surfaces occur in many formerly glaciated landscapes, where they represent areas that have escaped significant glacial modification. Frequently distinguished by blockfield mantles, relict non-glacial surfaces are important archives of long-term weathering and landscape evolution processes. The aim of this thesis is to examine the distribution, weathering, ages, and formation of relict non-glacial surfaces in the northern Swedish mountains.</p><p>Mapping of surfaces from aerial photographs and analysis in a GIS revealed five types of relict non-glacial surfaces that reflect differences in surface process types or rates according to elevation, gradient, and bedrock lithology. Clast characteristics and fine matrix granulometry, chemistry, and mineralogy reveal minimal chemical weathering of the blockfields.</p><p>Terrestrial cosmogenic nuclides were measured in quartz samples from two blockfield-mantled summits and a numerical ice sheet model was applied to account for periods of surface burial beneath ice sheets and nuclide production rate changes attributable to glacial isostasy. Total surface histories for each summit are almost certainly, but not unequivocally, confined to the Quaternary. Maximum modelled erosion rates are as low as 4.0 mm/kyr, which is likely to be near the low extreme for relict non-glacial surfaces in this landscape.</p><p>The blockfields of the northern Swedish mountains are Quaternary features formed through subsurface physical weathering processes. While there is no need to appeal to Neogene chemical weathering to explain blockfield origins, these surfaces have remained continuously regolith-mantled and non-glacial since their inception. Polygenetic surface histories are therefore indicated, where the large-scale surface morphologies are potentially older than their regolith mantles.</p>
8

Relict non-glacial surfaces and autochthonous blockfields in the northern Swedish mountains

Goodfellow, Bradley W. January 2008 (has links)
Relict non-glacial surfaces occur in many formerly glaciated landscapes, where they represent areas that have escaped significant glacial modification. Frequently distinguished by blockfield mantles, relict non-glacial surfaces are important archives of long-term weathering and landscape evolution processes. The aim of this thesis is to examine the distribution, weathering, ages, and formation of relict non-glacial surfaces in the northern Swedish mountains. Mapping of surfaces from aerial photographs and analysis in a GIS revealed five types of relict non-glacial surfaces that reflect differences in surface process types or rates according to elevation, gradient, and bedrock lithology. Clast characteristics and fine matrix granulometry, chemistry, and mineralogy reveal minimal chemical weathering of the blockfields. Terrestrial cosmogenic nuclides were measured in quartz samples from two blockfield-mantled summits and a numerical ice sheet model was applied to account for periods of surface burial beneath ice sheets and nuclide production rate changes attributable to glacial isostasy. Total surface histories for each summit are almost certainly, but not unequivocally, confined to the Quaternary. Maximum modelled erosion rates are as low as 4.0 mm/kyr, which is likely to be near the low extreme for relict non-glacial surfaces in this landscape. The blockfields of the northern Swedish mountains are Quaternary features formed through subsurface physical weathering processes. While there is no need to appeal to Neogene chemical weathering to explain blockfield origins, these surfaces have remained continuously regolith-mantled and non-glacial since their inception. Polygenetic surface histories are therefore indicated, where the large-scale surface morphologies are potentially older than their regolith mantles.
9

Late Quaternary ice sheet history and dynamics in central and southern Scandinavia

Johnsen, Timothy January 2010 (has links)
Recent work suggests an emerging new paradigm for the Scandinavian ice sheet (SIS); one of a dynamically fluctuating ice sheet. This doctoral research project explicitly examines the history and dynamics of the SIS at four sites within Sweden and Norway, and provides results covering different time periods of glacial history. Two relatively new dating techniques are used to constrain the ice sheet history: the optically stimulated luminescence (OSL) dating technique and the terrestrial cosmogenic nuclide (TCN) exposure dating technique. OSL dating of interstadial sediments in central Sweden and central Norway indicate ice-free conditions during times when it was previously inferred the sites were occupied by the SIS. Specifically, the SIS was absent or restricted to the mountains for at least part of Marine Isotope Stage 3 around 52 to 36 kyr ago. Inland portions of Norway were ice-free during part of the Last Glacial Maximum around 25 to 20 kyr ago. Consistent TCN exposure ages of boulders from the Vimmerby moraine in southern Sweden, and their compatibility with previous estimates for the timing of deglaciation based on radiocarbon dating and varve chronology, indicate that the southern margin of the SIS was at the Vimmerby moraine ~14 kyr ago. In central Sweden, consistent TCN ages for boulders on the summit of Mt. Åreskutan and for the earlier deglaciated highest elevation moraine related to the SIS in Sweden agree with previous estimates for the timing of deglaciation around 10 ka ago. These results indicate rapid decay of the SIS during deglaciation. Unusually old radiocarbon ages of tree remains previously studied from Mt. Åreskutan are rejected on the basis of incompatibility with consistent TCN ages for deglaciation, and incompatibility with established paleoecological and paleoglaciological reconstructions. Altogether this research conducted in different areas, covering different time periods, and using comparative geochronological methods demonstrates that the SIS was highly dynamic and sensitive to environmental change. / At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 3: Submitted. Paper 4: Manuscript.
10

Reconstitution des fluctuations glaciaires holocènes dans les Alpes occidentales : apports de la dendrochronologie et de la datation par isotopes cosmogéniques produits in situ / Holocene glacier fluctuations reconstruction in the Western Alps : contribution of dendrochronology and Cosmic Ray Exposure Dating

Le Roy, Melaine 02 May 2012 (has links)
Les glaciers de montagne sont l'un des meilleurs indicateurs des changements climatiques du fait de leur réponse rapide à de faibles variations des paramètres de forçage et de leur large distribution sur la planète. Les chronologies glaciaires représentent de ce fait des enregistrements de référence parmi les reconstitutions paléo-environnementales. Dans le contexte actuel de réchauffement et de retrait glaciaire accéléré, le développement de telles chronologies est nécessaire afin de mettre en perspective ces changements rapides et de grande ampleur avec ceux du Quaternaire récent. Si les fluctuations glaciaires holocènes sont relativement bien contraintes dans les Alpes centrales et orientales, les données sont en revanche extrêmement fragmentaires dans les Alpes occidentales avant la seconde moitié du Petit Age Glaciaire ss (1570-1850 AD). Pour pallier ce manque, nous avons conduit une étude sur plusieurs sites répartis dans trois massifs des Alpes françaises (Mont Blanc, Belledonne, Ecrins), en mettant en œuvre une approche multi-proxies basée sur plusieurs méthodes de datation (dendrochronologie, datation cosmogéniques 10Be, lichénométrie, datations radiocarbone) – dont certaines utilisées pour la première fois à cette échelle spatiale et temporelle. Tandis que les potentialités de chacune de ces méthodes sont discutées, notre étude a permis de proposer une chronologie des variations glaciaires couvrant la période holocène, dont les résultats sont comparés à d'autres enregistrements paléoclimatiques régionaux à haute résolution. Les résultats révèlent un schéma des fluctuations glaciaires holocènes comparable à celui généralement admis dans le reste des Alpes, avec la mise en évidence de récurrences glaciaires importantes au début de l'Holocène, antérieures à 9.3 ka, et la datation du début de la période du Néoglaciaire dès 4.2 ka. Une contrainte précise des différents stades de la seconde moitié de l'Holocène a pu être obtenue sur le site de la Mer de Glace grâce à l'approche dendroglaciologique sur bois subfossiles (Pinus cembra). Ce site apparaît d'ores et déjà comme l'un des plus importants pour l'étude de cette période puisque la chronologie établie couvre les 4000 dernières années et représente le quatrième enregistrement de cette précision à être développé dans les Alpes. Les datations obtenues indiquent en outre un synchronisme marqué des maxima glaciaires à l'échelle régionale, ce qui suggère une similarité des forçages sur la frange occidentale des Alpes. Les différences observées avec les chronologies du reste de la chaine s'expliqueraient principalement par les caractéristiques des glaciers étudiés, en particulier leur temps de réponse différent. / Mountain glaciers are one of the most reliable climatic proxy on Earth through their rapid response to slight changes in forcing and their wide distribution. For these reasons glacial chronologies constitutes reference series against which other paleoenvironmental reconstructions are evaluated. In the current context of global warming and glacier withdrawal worldwide, the building of such records is increasingly needed to assess these rapid and dramatic changes on the longer Late Quaternary timescale. The Holocene glacier fluctuations are now fairly well known in the Central and Eastern Alps, but datas from the Western Alps are extremely sparse, and the chronology of glacier fluctuations before the second half of the Little Ice Age (LIA) ss (1570-1850 AD) is thus poorly constrained. To fill this gap, we carried out a study on several sites distributed in three glaciated range of the French Alps (Mont Blanc, Belledonne, Ecrins). We choose a multi-proxies approach based on the implementation of several dating methods (dendrochronology, Cosmic Ray Exposure dating with 10Be, lichenometry, radiocarbon) – some of which were used for the first time on these spatial- and time-scales. This approach allowed us to propose a glacial chronology spanning the Holocene. Moreover, strength and weakness of the different methods used are discussed, and the results are compared to other high resolution proxies from the Great Alpine Region. Our results shows a picture broadly similar to the Holocene glacier variations model currently accepted in the European Alps : we shows evidence for large Early-Holocene advances prior to 9.3 ka and for the beginning of the Neoglacial period from 4.2 ka onwards. An accurate dating of the Neoglacial stadials was possible at Mer de Glace through the use of a dendroglaciological approach on subfossil woods (Pinus cembra). This site already appears as one of the most interesting in the whole Alps to study the Neoglacial period, as the chronology established there spans the last 4 ka and is the 4th record of this kind builds in the Alps. The datings presented here reveals a marked synchroneity for Neoglacial maxima at the Alpine scale, which could indicate similar forcing on glaciers from the Western fringe. Main discrepancies between the records could be explained by topographic and size characteristics of the studied glaciers, as expressed by their response time.

Page generated in 0.0836 seconds