Spelling suggestions: "subject:"extended motthubbard model"" "subject:"extended hubbard model""
1 |
Comparison of classical and quantum properties in an extended Bose-Hubbard modelVega Gutierrez de Pineres, Albaro January 2011 (has links)
In order to explore a quantum version of a discrete nonlinear Schrödinger equation (DNLS), we quantize one nonlinear Schrödinger model, which is used to study different physical systems, e.g. coupled Bose-Einstein condensates. We will focus on small systems, like Dimer and Trimer.In our efforts to solve this quantum problem, we develop a Mathematica routine that implements the Number State Method and solves the corresponding Schrödinger equation. We calculate analytically and numerically the energy spectrum of the Dimer and Trimer systems. Those eigenenergies depend on the parameter set Q=Q1, Q2, Q3, Q4, Q5 and by adjusting this set Q, we can obtain the desired results and examine their effects. After the quantization of the extended DNLS we obtain a quantum DNLS, also known as an extended Bose-Hubbard (BH) model. The aim of this Master's thesis is to study the differences and similarities between the classical DNLS and the extended BH model, and what happens when we approach from the quantum regime to the classical one. Taking into account that the Hamiltonian has an important conserved quantity, the number operator, enables the total Hamiltonian to be block-diagonalized. This can be accomplished by taking advantage of additional symmetries, such as translational symmetry, which will simplify the analysis of the Hamiltonian matrix. In our results we discuss several effects that break the lattice symmetry, as the intersection between symmetric and antisymmetric states. We also compare our results with those obtained in previous works for the classical model, and we find some similarities, e.g. the transition of the highest-energy state from a one-site solution to a two-site solution depending on which Q parameters we vary, but also differences, as the appearance of a three-site solution, in a Trimer system.
|
2 |
Quantum Compactons in an extended Bose-Hubbard modelJason, Peter January 2011 (has links)
The Bose-Hubbard model is used to study bosons in optical lattices. In this thesis we will use an extended Bose-Hubbard model to study a type of completely localized solutions, called compactons. The compactons are a special case of the much studied solitons. The soliton is a familiar concept in non-linear physics. It is a stable, localized wave-solution, found in a range of different systems; from DNA-molecules to optical fibers. The compacton is a soliton that is completely localized, i.e. strictly zero outside a given area. The dynamics of the (extended) Bose-Hubbard model is based on the tunneling of particles between the lattice sites. The ordinary Bose-Hubbard model only accounts for one-particle tunneling processes. We will consider a model that also takes some two-particle tunneling processes into account, basically by considering long-range effects of the particle interaction. The aim of this thesis is to find and study the quantum analog of the compactons found in an extended Discrete Non-Linear Schrödinger equation. We will study analytical solutions and try to find if and under which conditions specific compactons exist. Numerical calculations are made to study the properties of the compactons and to study how compacton solutions arise in the classical limit.
|
3 |
Matter waves in reduced dimensions : dipolar-induced resonances and atomic artificial crystals / Ondes de matière en dimensions réduites : resonances dipolaires et cristaux atomiques artificielsBartolo, Nicola 01 December 2014 (has links)
La réalisation de condensats de Bose-Einstein et de gaz de Fermi dégénérés ont déclenché d'énormes progrès dans les méthodes théoriques ainsi que dans la mise en place de nouvelles techniques expérimentales. Parmi celles-ci, de fascinantes possibilités viennent de l'implémentation de réseaux optiques : potentiels périodiques pour atomes neutres créés à travers l'interférence de rayons laser. Un gaz dégénéré dans un réseau optique peut être forcé dans des pièges fortement anisotropes, jusqu'à réduire la dimensionnalité du système physique. Du point de vue fondamental, le comportement des ondes de matière en dimensions réduites éclaircit les propriétés intrinsèques des interactions entre particules. En outre, ces systèmes à dimensionnalité réduite peuvent être manipulés afin de créer des simulateurs quantiques de la matière condensée, comme par exemple des réseaux à deux dimensions, dans un environnement pur et contrôlable. Motivés par les passionnantes perspectives de ce domaine, on a consacré cette Thèse à l'étude théorique de deux systèmes dans lesquels une onde de matière se propage en dimensions réduites. L'interaction dipôle-dipôle, à longue portée et anisotrope, affecte fortement le comportement des gaz quantiques. Les progrès expérimentaux dans ce domaine florissant permettront bientôt de piéger dans des réseaux optiques un gaz dégénéré de dipôles. Dans la première partie de cette thèse, on considère l'apparition d'une seule résonance dipolaire dans l'interaction entre deux particules pour différents systèmes quasi-unidimensionnels. On propose une approche à deux canaux qui décrit cette résonance dans un piège harmonique fortement allongé “en forme de cigare”, qui représente l'approximation d'un site d'un réseau optique quasi-unidimensionnel. A` ce stade, on développe un nouveau modèle étendu de Bose-Hubbard atome-dimère, qui est valable pour des bosons dipolaires dans un réseau optique quasi-unidimensionnel. On étudie donc le diagramme de phase du modèle pour T =0 par la diagonalisation exacte de systèmes de petite taille, en soulignant les effets de la résonance dipolaire sur la physique à plusieurs corps dans le réseau. Dans la seconde partie de la thèse, on propose un modèle pour réaliser des simulateurs quantiques de cristaux bidimensionnels avec des atomes froids, basé sur le piégeage indépendant de deux espèces atomiques. La première constitue une onde de matière bidimensionnelle qui interagit exclusivement avec les atomes de la seconde espèce, piégés aux nœuds d'un réseau optique bidimensionnel. En introduisant une approche théorique générale, on examine les propriétés de transport de l'onde de matière. On propose des exemples d'application pour réseaux soit de Bravais (carré, triangulaire), soit de non-Bravais (graphène, kagomé), en étudiant soit des systèmes périodiques idéaux, soit des systèmes de taille expérimentale et désordonnés. Les caractéristiques d'un réseau atomique artificiel dépendent de l'intensité de l'interaction entre les deux espèces, qu'on montre être largement réglable grâce à des résonances à dimensionnalité mixte de type 0D-2D. / The experimental achievement of Bose-Einstein condensation and Fermi degeneracy with ultracold gases boosted tremendous progresses both in theoretical methods and in the development of new experimental tools. Among them, intriguing possibilities have been opened by the implementation of optical lattices: periodic potentials for neutral atoms created by interfering laser beams. Degenerate gases in optical lattices can be forced in highly anisotropic traps, reducing the effective dimensionality of the system. From a fundamental point of view, the behavior of matter waves in reduced dimensions sheds light on the intimate properties of interparticle interactions. Furthermore, such reduced-dimensional systems can be engineered to quantum-simulate fascinating solid state systems, like bidimensional crystals, in a clean and controllable environment. Motivated by the exciting perspectives of this field, we devote this Thesis to the theoretical study of two systems where matter waves propagate in reduced dimensions.The long-range and anisotropic character of the dipole-dipole interaction critically affects the behavior of dipolar quantum gases. The continuous experimental progresses in this flourishing field might lead very soon to the creation of degenerate dipolar gases in optical potentials. In the first part of this Thesis, we investigate the emergence of a single dipolar-induced resonance in the two-body scattering process in quasi-one dimensional geometries. We develop a two-channel approach to describe such a resonance in a highly elongated cigar-shaped harmonic trap, which approximates the single site of a quasi-one- dimensional optical lattice. At this stage, we develop a novel atom-dimer extended Bose- Hubbard model for dipolar bosons in this quasi-one-dimensional optical lattice. Hence we investigate the T=0 phase diagram of the model by exact diagonalization of a small- sized system, highlighting the effects of the dipolar-induced resonance on the many-body behavior in the lattice.In the second part of the Thesis, we present a general scheme to realize cold-atom quantum simulators of bidimensional atomic crystals, based on the possibility to independently trap two different atomic species. The first one constitutes a two-dimensional matter wave which interacts only with the atoms of the second species, deeply trapped around the nodes of a two-dimensional optical lattice. By introducing a general analytic approach, we investigate the matter-wave transport properties. We propose some illustrative appli- cations to both Bravais (square, triangular) and non-Bravais (graphene, kagomé) lattices, studying both ideal periodic systems and experimental-sized, eventually disordered, ones. The features of the artificial atomic crystal critically depend on the two-body interspecies interaction strength, which is shown to be widely tunable via 0D-2D mixed-dimensional resonances.
|
Page generated in 0.0913 seconds