• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Experimental Measurement of Diffusive Extinction Depth and Soil Moisture Gradients in Southwestern Saudi Arabian Dune Sand

Mughal, Iqra 05 1900 (has links)
In arid lands, a major contribution to water loss is by soil water evaporation. Desert sand dunes in arid regions are devoid of runoff and have high rates of infiltration. Rainwater is commonly stored within them because of the low permeability soils in the underlying desert pavement. In such cases, moisture is confined in the sand dune below a depth, termed as the “extinction depth”, where it is protected from evaporation during long dry periods. Moreover, desert sand dunes have sparse vegetation, which results in low transpiration losses from the stored water. The water accumulated below the extinction depth of the sand dunes can be utilized for various purposes such as in irrigation to support desert agriculture. In this study, field experiments were conducted in Western Saudi Arabia to monitor the soil moisture gradients and determine the diffusive extinction depth of dune sand. The dune sand was saturated with water and was exposed to natural conditions (evaporation and precipitation). The decline of the water level in the sand column was continuously recorded using transducers and sensors installed at different depths monitored the temporal variation of temperature and moisture content within the sand. The hydrological simulator HYDRUS-1D was used to construct the vertical profiles of soil water content and temperature and the results obtained from HYDRUS-1D were compared to the gradients monitored by the sensors.
2

Vadose zone processes affecting water table fluctuations: Conceptualization and modeling considerations

Shah, Nirjhar 01 June 2007 (has links)
This dissertation focuses on a variety of vadose zone processes that impact water table fluctuations. The development of vadose zone process conceptualization has been limited due to both the lack of recognition of the importance of the vadose zone and the absence of suitable field data. Recent studies have, however, shown that vadose zone soil moisture dynamics, especially in shallow water table environments, can have a significant effect on processes such as infiltration, recharge to the water table, and evapotranspiration. This dissertation, hence, attempts to elucidate approaches for modeling vadose zone soil moisture dynamics. The ultimate objective is to predict different vertical and horizontal hydrological fluxes. The first part of the dissertation demonstrates a new methodology using soil moisture and water table data collected along a flow transect. The methodology was found to be successful in the estimation of hydrological fluxes such as evapotranspiration, infiltration, runoff, etc. The observed dataset was also used to verify an exponential model developed to quantify the ground water component of total evapotranspiration. This analysis was followed by a study which analyzed the impact of soil moisture variability in the vadose zone on water table fluctuations. It was found that antecedent soil moisture conditions in the vadose zone greatly affected the specific yield values, causing a broad range of water table fluctuations for similar boundary fluxes. Hence, use of a constant specific yield value can produce inaccurate results. Having gained insight into the process of evapotranspiration and specific yield, a threshold based model to determine evapotranspiration and subsequent water table fluctuation was conceptualized and validated. A discussion of plant root water uptake and its impact on vadose zone soil moisture dynamics is presented in the latter half of this dissertation. A methodology utilizing soil moisture and water table data to determine the root water uptake from different sections of roots is also described. It was found that, unlike traditional empirical root water uptake models, the uptake was not only proportional to the root fraction, but was also dependent on the ambient soil moisture conditions. A modeling framework based on root hydraulic characteristics is provided as well. Lastly, a preliminary analysis of observed data indicated that, under certain field conditions, air entrapment and air pressurization can significantly affect the observed water table values. A modeling technique must be developed to correct such observations.

Page generated in 0.0782 seconds