• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Métodos estatísticos para classificação de massas em mamografias

Alcântara, Rafaela Souza 14 December 2015 (has links)
Submitted by Diogo Barreiros (diogo.barreiros@ufba.br) on 2017-06-02T17:34:16Z No. of bitstreams: 1 template-msc.pdf: 7779839 bytes, checksum: 3727636ba3903e44e4de17aefcf68481 (MD5) / Approved for entry into archive by Uillis de Assis Santos (uillis.assis@ufba.br) on 2017-06-07T18:25:00Z (GMT) No. of bitstreams: 1 template-msc.pdf: 7779839 bytes, checksum: 3727636ba3903e44e4de17aefcf68481 (MD5) / Made available in DSpace on 2017-06-07T18:25:00Z (GMT). No. of bitstreams: 1 template-msc.pdf: 7779839 bytes, checksum: 3727636ba3903e44e4de17aefcf68481 (MD5) / O câncer de mama é considerado a segunda neoplasia responsável por mais mortes em mulheres no mundo. Para a prevenção e redução desse número, a mamografia de screening é o exame mais utilizado para detecção de nódulos em estágios iniciais. A partir desse exame, o radiologista pode analisar as anomalias e a partir disso desenvolver um diagnóstico. Para aumentar a acurácia dos resultados obtidos a partir das imagens de mamografia, estão sendo desenvolvidos softwares de auxílio à diagnóstico computer-aided diagnosis capazes de automatizar o processo de análise da imagem e extrair informações relevantes para a classificação dos nódulos presentes nos exames. Esse trabalho apresenta duas novas metodologias para extração de features e classificação de massas e não-massas,s a partir da Entropia de Tsallis extraídas através da matriz de co-ocorrência (GLCM) e através da matriz de valores singulares (SVD) da imagem de mamografia, alcançando uma acurácia máxima de 91.3% / Breast cancer has been considered the second neoplasia responsible for women’s death in the last few years. To prevent and to reduce these statistics, screening mammography has been used as the most important exam to detect nodules on initial stages. From this exam, the radiologist can analyze anomalies and to provide some diagnostic. To improve the results accuracy rate from mammography images, computer-aided diagnosis softwares have been developed with the ability to automate the image analyses processing and to extract relevant information for mass classifications on screening exams. This work presents two new methodologies for feature extraction for mass and non-mass classification, based on Tsallis entropy calculated from gray level cooccurrence matrix (GLCM) and from singular value decomposition (SVD), reaching the best accuracy rate of 91.3%.
2

Extração de features 3D para o reconhecimento de objetos em nuvem de pontos / 3D feature extraction for objects recognition in point clouds

Sales, Daniel Oliva 16 October 2017 (has links)
A detecção e reconhecimento de objetos é uma tarefa fundamental em aplicações relacionadas à navegação autônoma de robôs móveis e veículos inteligentes. Com a evolução tecnológica nos sistemas sensoriais, surgiram equipamentos capazes de detectar e representar os elementos presentes no ambiente de forma tridimensional, em estruturas chamadas nuvem de pontos. Os sensores 3D geralmente capturam um grande volume de pontos em curtos intervalos de tempo, o que demanda técnicas robustas para processamento dessa informação além de tolerância a eventuais ruídos nos dados. Uma abordagem frequentemente utilizada na área de Visão Computacional para redução de dimensionalidade é a extração de features robustas, armazenando um subconjunto de informações representativas e simplificadas do conjunto de dados. Esta tese apresenta uma metodologia de classificação de objetos em nuvens de pontos 3D através da extração de features 3D globais. Foi desenvolvido um novo descritor 3D invariante à escala, translação e rotação denominado 3D-CSD (3D-Contour Sample Distances) para representação da superfície dos objetos presentes no ambiente, e utilizado um método de aprendizado supervisionado para reconhecimento de padrões. Os experimentos realizados envolveram o uso de Redes Neurais Artificiais para o reconhecimento de diferentes classes de objetos, avaliando e validando a metodologia proposta. Os resultados obtidos demostraram a viabilidade da aplicação desta abordagem para o reconhecimento de objetos em sistemas de percepção 3D. / Objects detection and recognition is a critical task in applications for mobile robots and intelligent vehicles autonomous navigation. With the advent of many 3D sensors, environment elements can be detected and represented in three-dimensional mode, in structures known as point clouds. 3D sensors usually capture a large amount of points at high rates, requiring robust techniques to process this information and also deal with noise on input data. A common approach in the Computer Vision field for dimensionality reduction is the use of robust features extraction techniques. This way, only a subset with representative and simplified information from the dataset is processed. This thesis presents a methodology for objects recognition in 3D point clouds using global 3D features extraction. A novel 3D descriptor invariant to scale, translation and rotation named 3D-CSD (3D-Contour Sample Distances) was developed to represent the objects surface, and a supervised learning method used for pattern recognition. The experiments were performed using Artificial Neural Networks for the recognition of different classes of objects, evaluating and validating the proposed methodology. Obtained results demonstrated the feasibility of this approach application for object recognition in 3D perception systems.
3

Extração de features 3D para o reconhecimento de objetos em nuvem de pontos / 3D feature extraction for objects recognition in point clouds

Daniel Oliva Sales 16 October 2017 (has links)
A detecção e reconhecimento de objetos é uma tarefa fundamental em aplicações relacionadas à navegação autônoma de robôs móveis e veículos inteligentes. Com a evolução tecnológica nos sistemas sensoriais, surgiram equipamentos capazes de detectar e representar os elementos presentes no ambiente de forma tridimensional, em estruturas chamadas nuvem de pontos. Os sensores 3D geralmente capturam um grande volume de pontos em curtos intervalos de tempo, o que demanda técnicas robustas para processamento dessa informação além de tolerância a eventuais ruídos nos dados. Uma abordagem frequentemente utilizada na área de Visão Computacional para redução de dimensionalidade é a extração de features robustas, armazenando um subconjunto de informações representativas e simplificadas do conjunto de dados. Esta tese apresenta uma metodologia de classificação de objetos em nuvens de pontos 3D através da extração de features 3D globais. Foi desenvolvido um novo descritor 3D invariante à escala, translação e rotação denominado 3D-CSD (3D-Contour Sample Distances) para representação da superfície dos objetos presentes no ambiente, e utilizado um método de aprendizado supervisionado para reconhecimento de padrões. Os experimentos realizados envolveram o uso de Redes Neurais Artificiais para o reconhecimento de diferentes classes de objetos, avaliando e validando a metodologia proposta. Os resultados obtidos demostraram a viabilidade da aplicação desta abordagem para o reconhecimento de objetos em sistemas de percepção 3D. / Objects detection and recognition is a critical task in applications for mobile robots and intelligent vehicles autonomous navigation. With the advent of many 3D sensors, environment elements can be detected and represented in three-dimensional mode, in structures known as point clouds. 3D sensors usually capture a large amount of points at high rates, requiring robust techniques to process this information and also deal with noise on input data. A common approach in the Computer Vision field for dimensionality reduction is the use of robust features extraction techniques. This way, only a subset with representative and simplified information from the dataset is processed. This thesis presents a methodology for objects recognition in 3D point clouds using global 3D features extraction. A novel 3D descriptor invariant to scale, translation and rotation named 3D-CSD (3D-Contour Sample Distances) was developed to represent the objects surface, and a supervised learning method used for pattern recognition. The experiments were performed using Artificial Neural Networks for the recognition of different classes of objects, evaluating and validating the proposed methodology. Obtained results demonstrated the feasibility of this approach application for object recognition in 3D perception systems.

Page generated in 0.0745 seconds