Spelling suggestions: "subject:"extracellular matrix (ECM)"" "subject:"fxtracellular matrix (ECM)""
1 |
Studies of the 67 kilodalton laminin receptor in retinal vasculatureMcKenna, Declan Joseph January 1999 (has links)
No description available.
|
2 |
Electrospun Nanofibrous Scaffolds For Tissue EngineeringNdreu, Albana 01 January 2007 (has links) (PDF)
In this study a microbial polyester, poly(3-hydroxybutyrate-co-3-
hydroxyvalerate) (PHBV), and its blends were wet or electrospun into
fibrous scaffolds for tissue engineering.
Wet spun fiber diameters were in the low micrometer range (10-50 & / #956 / m).
The polymer concentration and the stirring rate affected the properties the
most. The optimum concentration was determined as 15% (w/v).
Electrospun fiber diameters, however, were thinner. Solution viscosity,
potential, distance between the syringe tip and the collector, and polymer
type affected the morphology and the thickness of beads formed on the
fibers. Concentration was highly influential / as it increased from 5% to 15%
(w/v) fiber diameter increased from 284 ± / 133 nm to 2200 ± / 716 nm.
Increase in potential (from 20 to 50 kV) did not lead to the expected
decrease in fiber diameter. The blends of PHBV8 with lactide-based
v
polymers (PLLA, P(L,DL-LA) and PLGA (50:50)) led to fibers with less beads
and more uniform thickness.
In vitro studies using human osteosarcoma cells (SaOs-2) revealed that wet
spun fibers were unsuitable because the cells did not spread on them while
all the electrospun scaffolds promoted cell growth and penetration. The
surface porosities for PHBV10, PHBV15, PHBV-PLLA, PHBV-PLGA (50:50)
and PHBV-P(L,DL)LA were 38.0± / 3.8, 40.1± / 8.5, 53.8± / 4.2, 50.0± / 4.2 and
30.8± / 2.7%, respectively. Surface modification with oxygen plasma
treatment slightly improved the cell proliferation rates.
Consequently, all scaffolds prepared by electrospinning revealed a significant
potential for use in bone tissue engineering applications / PHBV-PLLA blend
appeared to yield the best results.
|
3 |
Structural and functional studies on the G1 domain of human versicanFoulcer, Simon January 2012 (has links)
The chondroitin sulphate proteoglycan (CSPG) versican forms complexes with hyaluronan (HA), which are essential in a range of functions including cellular proliferation and migration. Four isoforms of versican result from alternative splicing. Furthermore, biological roles have been identified for the proteolytic cleavage product of versican which contains the N-terminal G1 hyaluronan binding domain. All of these versican forms have different tightly regulated tissue expression profiles. Consequently, impaired regulation is associated with a number of disease pathologies. For example the largest variants (V0/V1) have been shown to be negative indicators of disease outcome in a number of malignant cancers and are a marker of disease progression in atherosclerosis. Interestingly, the smaller versican isoform V3 which lacks CS chains has been demonstrated to have the potential to reverse disease associated phenotypes. The motivation for carrying out the work in this thesis was to try and gain a better understanding of how versican functions on a molecular scale. In this regard, the first aim was to investigate the structure of the hyaluronan binding region of versican using a construct called VG1. The structure of VG1 was analysed in the presence and absence of hyaluronan oligomers. This revealed an insight into the multi-modular structure of the versican hyaluronan binding region and demonstrated that on binding to HA, VG1 under goes a conformational change. Furthermore, the interaction between VG1 and longer lengths of hyaluronan (pHA) was investigated. This demonstrated that when VG1 binds to pHA it is does so with positive cooperativity, packing very close to neighbouring VG1 molecules along a chain of HA. One consequence of this interaction was to reorganise pHA into a helical conformation, an organisation that was confirmed by a number of solution phase techniques. The effect of this reorganisation of pHA by VG1 on HA/CD44 interactions was also assessed. Previously the interaction between CD44 (a cell surface hyaluronan receptor) and long chains of HA (>30 kDa) was shown to be irreversible; however we demonstrate that VG1 can reverse this. Furthermore, a TSG-6 enhanced CD44/interaction was also completely reversed by the addition of VG1. This provides an indication that a functional hierarchy of hyaluronan binding proteins may exist which could have important implications in understanding the function of hyaluronan complexes. Currently, we do not know whether intact versican molecules could interact with HA in the same way as VG1. However, preliminary data suggests that the CS-containing variants (i.e. V0, V1 and V2) would not, whereas V3 and versican fragments could. This work provides an exciting mechanistic insight into the function of versican variants and their breakdown products.
|
4 |
Deconstructing wound healing: in vitro models and factors affecting stromal tissue repairGriebel, Megan E. 17 January 2023 (has links)
Damage to our tissues occurs daily and must be repaired by the body in a timely manner in order to prevent infection and restore tissue integrity. Many cell types are involved in the healing process, but it is the cells of the stroma that are largely responsible for rebuilding fibrous tissue, which provides structure and support for all other cell types during healing. This dissertation focuses on stromal tissue repair, the rebuilding of fibrous tissue by fibroblasts following injury. Specifically, I focus on 1) models to study wound healing in vitro, and the specific biological processes of healing that each model captures, 2) the response of engineered stromal microtissues to different methods of injury, namely laceration and laser ablation, and the subsequent clearance and rebuilding of the extracellular matrix by fibroblasts, and 3) how different types of stromal cells and extracellular matrix proteins contribute to tissue repair in vitro.
|
5 |
Stimuli-Responsive Peptide-Based Biomaterials: Design, Synthesis, and ApplicationsZhu, Yumeng 15 May 2023 (has links)
Peptide-based biomaterials have gained much interest in various applications in drug delivery and tissue engineering in recent years, in large part due to their typically excellent biocompatibility and biodegradability. Composed of different amino acids, peptides can be designed with numerous sequences, providing flexibility and tunability in biomaterials. Peptides are easy to modify with small molecule drugs, inorganic components, and polymer chains to access multiple functions and tune properties relevant to biology and medicine. Stimuli-responsive peptide-based biomaterials can respond to environmental stimuli, such as light and ultrasound, in addition to local environmental factors, such as temperature, enzyme activity, and pH. Under environmental changes, these materials can be triggered to release therapeutic payloads, change conformations, or induce self-assembly in the target sites.
In this work, I introduce the design, synthesis, and potential applications of several stimuli-responsive peptide-based biomaterials. The first half of this dissertation is based on enzyme-responsive, peptide-based biomaterials as extracellular matrix (ECM) mimics in tissue engineering. We synthesized linear and dendritic elastin-like peptides (ELPs) as crosslinkers and conjugated them with hyaluronic acid (HA) to form hydrogels. Trypsin was used as the enzyme trigger for cleaving the C-terminal lysine and to study how crosslinker topology affects enzymatic degradation. Hydrogels with dendritic ELPs degraded more slowly than linear ELPs, providing a novel strategy to tune the degradation rate of hydrogels as ECM mimics by the molecular design of crosslinker topology. Building on this peptide-polysaccharide platform for synthetic ECM design, we subsequently prepared hydrogels embedded with bioactive cryptic sites. These novel polymeric hydrogels mimicked native ECM cryptic sites by using depsipeptides that undergo an enzyme-triggered molecular rearrangement, "switching" from a non-functional epitope to a bioactive sequence. Mass spectrometry, 1H and 13C NMR spectroscopy, and fluorescence studies were applied to track structural changes in the peptide. SEM was used to image these polymer-peptide hybrid hydrogels. Finally, in vitro studies were conducted to evaluate cell interactions with the hydrogels. Switch peptide-modified alginate hydrogels showed increased cell adhesion upon induction of enzymatic activity, which provided a "gain of function" of the synthetic ECM. Critically, enzymes associated with the cells themselves could trigger the peptide switch and change in synthetic ECM behavior.
With knowledge of stimuli-responsive peptide-based biomaterials applied in tissue engineering, I then studied how this system could be used in drug delivery by designing peptide-hydrogen sulfide (H2S) donor conjugates (PHDCs). H2S is a gasotransmitter that is produced endogenously, which has been explored in recent years with many potential therapeutical applications. We studied H2S release profiles in dual-enzyme-responsive PHDCs, with a further investigation into PHDC–Fe2+ complexes for potential tumor treatments via chemodynamic therapy. The PHDC–Fe2+ complexes were examined in a C6 glioma cell line, exhibiting an improved cell-killing effect compared with controls, by inducing toxic hydroxyl radical generation (•OH) via a Fenton reaction. To this end, we further discovered how side chains influence self-assembling nanostructures, H2S release profiles, and biological activities via three constitutionally isomeric PHDCs. Different morphologies and varied H2S release rates were observed, paving the way for tuning the properties of PHDCs by simple changes in molecular design. Finally, this dissertation discloses conclusions and future directions on stimuli-responsive peptide-based biomaterials using similar platforms with different designs in the drug delivery and tissue engineering fields. / Doctor of Philosophy / Peptides, short sequences of two or more amino acids linked by chemical bonds, are smaller versions of proteins. Forming naturally in nature, peptides are promising candidates in the design of biocompatible and biodegradable materials. To make these peptide-based materials "smart", certain sequences or functional groups are installed in the peptides, making them responsive to environmental changes, or stimuli. These external stimuli include light, ultrasound, temperature, enzyme activity, and pH changes. In this work, we have explored the design and synthesis of stimuli-responsive peptide-based biomaterials and their potential applications in tissue engineering and drug delivery.
The first half of this dissertation focuses on the design and synthesis of two enzyme-responsive, peptide-based materials that function as extracellular matrix (ECM) mimics. The ECM is a three-dimensional microenvironment where cells reside, providing structural support and adhesive anchor points for cells. In the first system, we synthesized peptide-polysaccharide hydrogels with different peptide crosslinkers, comparing their enzymatic degradation performance to evaluate how peptide topology (architecture) influences degradation. A more branched topology led to a slower hydrogel degradation rate. To introduce biofunctionality into the ECM mimics, we embedded the second system with a "switchable" peptide sequence, which transformed from a non-functional peptide into a functional, bioactive epitope after being triggered by an enzyme. The functional peptide after the switch provided cell adhesion and increased cell spreading.
The latter half of this dissertation explores the possibility of stimuli-responsive peptide-based biomaterials in drug delivery. We designed peptides that release hydrogen sulfide (H2S), a signaling gas is commonly known for its foul smell and toxicity, and studied the biological behaviors in cells. The peptide-H2S donor conjugates (PHDCs) were activated by the enzyme legumain, which cancer cells overproduce, leading to H2S release. With the combined treatment with Fe2+, the PHDC-Fe2+ system reduced cancer cell viability due to the high amount of hydroxyl radicals (•OH) generated by the Fenton reaction. This system may be a potential design platform for precise tumor treatments.
|
6 |
Mechanics and transport characterization of bioengineered tissue microenvironment platformsAntoine, Elizabeth E. 24 April 2014 (has links)
The tissue microenvironment is a complex living system containing heterogeneous mechanical and biophysical cues. Cellular components are surrounded by extracellular matrix and interstitial fluid, while transport of nutrients and biochemical factors is achieved via the vasculature. Each constituent of the tissue microenvironment can play a significant role in its ability to function normally. Many diseases including cancer have been linked with dysfunction in the tissue microenvironment; therefore an improved understanding of interaction between components of this complex system is needed.
In vitro platforms mimicking the tissue microenvironment appear to provide the most promising avenue for studies of cell-cell and cell-matrix interactions as well as elucidation of the mechanisms leading to disease phenomena such as tumor metastasis. However, successful recapitulation of all three primary components of the tissue microenvironment in three dimensions has remained challenging. In particular, matching mechanical cues and biochemical transport to in vivo conditions is difficult because of lack of quantitative characterization of the physical properties and parameters of such platforms.
In this work, extensive characterization of collagen I hydrogels, popular for use as extracellular matrix mimics, was performed in order to enable tuning to specific in vivo conditions. Additionally, perfusion of blood in a 3D tissue microenvironment platform fabricated using collagen hydrogels was characterized to enable future advances in in vitro modeling of the in vivo microenvironment. Finally, the tissue microenvironment platform is modified to enable biochemical gradients within the hydrogel and used to examine directed migration (chemotaxis) of human breast cancer cells in response to gradients in growth factor combined with varied stiffness and pore diameter of the extracellular matrix. / Ph. D.
|
7 |
Diffusional Properties of Articular CartilageLeddy, Holly Anne 14 March 2007 (has links)
Articular cartilage is the connective tissue that lines joints and provides a
smooth surface for articulation and shock absorption. Osteoarthritis, the
progressive degeneration of cartilage, is a painful, debilitating, and widespread
disease, affecting 70% of people over 65. Because cartilage is avascular,
molecular transport occurs primarily via diffusion. The goal of these studies was
to examine whether cartilage matrix structure and composition have a significant
effect on diffusive transport.
We hypothesized that diffusion is anisotropic in the surface zone of
cartilage where collagen structure is aligned and densely packed. A theoretical
model and experimental protocol for fluorescence imaging of continuous point
photobleaching (FICOPP) were developed to measure diffusional anisotropy.
Significant anisotropy was observed in ligament, a highly ordered collagenous
tissue. In less ordered articular cartilage, diffusional anisotropy was dependent
on site in the tissue and size of the diffusing molecule. These findings suggest
that diffusional transport of macromolecules is anisotropic in collagenous tissues,
with higher rates of diffusion along primary orientation of collagen fibers.
We hypothesized that structural differences in the pericellular matrix of
cartilage (PCM) would lead to differences in diffusive properties as compared to
the surrounding extracellular matrix (ECM). We modified the scanning
microphotolysis (SCAMP) technique to allow measurement of diffusion
coefficients within the PCM. Diffusion coefficients in the PCM were lower than
in the adjacent ECM in normal cartilage, but with early stage arthritis, the PCM
diffusivity was not different from that of the ECM. These data suggest that
breakdown of the PCM is an early step in arthritis development.
We hypothesized that compression of cartilage would cause site‐specific
diffusivity decreases and diffusional anisotropy increases. We utilized SCAMP
and FICOPP to measure diffusion coefficients and diffusional anisotropy in
cartilage as it was compressed. We found that diffusivity decreased and
anisotropy increased with increasing strain in a site‐specific manner. These
findings suggest that the high surface zone strains that lead to low diffusivity
and high anisotropy will decrease transport between cartilage and synovial fluid
in compressed cartilage. We have shown that matrix structure and composition
have a significant effect on diffusive transport in cartilage. / Dissertation
|
8 |
Complexo Quinômico envolvido com adaptação de osteoblasto em scaffold orgânico sob condição de diferenciação celularMarumoto, Ariane January 2016 (has links)
Orientador: Willian Fernando Zambuzzi / Resumo: Modelos in vitro têm facilitado a análise da fisiologia celular sob condições experimentais diversas; trata-se de modelo alternativo ao uso de animais de experimentação, que vem sendo difundido e aceito amplamente em pesquisa científica. Além disso, estes modelos têm levado à avanços significativos na compreensão das interações mútuas e adaptativas entre células e substratos. Neste trabalho, nosso objetivo foi analisar eventos moleculares responsáveis pela adaptação de preosteoblastos em substrato orgânico composto por componentes da Matriz Extracelular (MEC), sob condição de diferenciação celular. Metodologicamente, pré-osteoblastos (MC3T3-E1 50x103 células/ml) foram semeados sobre uma fina camada de Matrigel® gelificada e mantidos por 10 dias (37oC, 5% de CO2 em ambiente úmido) sob condição de diferenciação (meio de cultivo contendo 50 µg de ácido ascórbico e 10 mM de ß- glicerofosfato), com renovação do meio de cultivo a cada 3 dias. Alterações morfológicas foram monitoradas em microscópio invertido e mecanismos moleculares acompanhados pela análise global da atividade de quinases, através de arranjo de peptídeos (Pepchip). Curiosamente, nossos resultados mostraram mudanças morfológicas significantes durante adaptação celular as quais foram acompanhadas pela atuação de vias de sinalização celular distintas, responsáveis pela sobrevivência (Eixo PI3K-Akt) e proliferação (Eixo Retinoblastoma-ciclinas) celulares, além de proteínas envolvidas com metabolismo energético e comun... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: In vitro models have been proposed to analyze cellular physiology under various experimental conditions. It is an alternative model instead using experimental animals that have been widespread and widely accepted in scientific research. Moreover, it has led to significant advances in the understanding of mutual and adaptive interactions between cells and substrates. In this work, our aim was to analyze adaptive events of osteoblasts cultured on an organic substrate composed by components of the extracellular matrix (ECM) in the first 10 days of cultivation on differentiation condition. Methodologically, pre-osteoblasts (MC3T3-E1 pre-osteoblasts, 50x103 cells / ml) were seeded on a thin gelified Matrigel® layer and maintained for 10 days under standard cell culture conditions (37 ° C, 5% CO2 in a humid environment) under differentiation conditions (culture media containing 50 ug of ascorbic acid and 10 mM beta-glycerophosphate). The culture medium was changed every 3 days. Morphological changes were monitored using an inverted microscope and molecular mechanisms followed by comprehensive analysis of kinase activity by peptides arrangement (Pepchip). Interestingly, our results showed significant morphological changes during cell adaptation which were accompanied by distinct signaling pathways involving proteins responsible for survival (PI3K-Akt axis) and cell proliferation (Retinoblastoma-cyclins axis), in addition of proteins involved in energy metabolism and cellular communi... (Complete abstract click electronic access below) / Mestre
|
9 |
Fibril bending stiffness of 3D collagen matrices instructs spreading and clustering of invasive and non-invasive breast cancer cellsSapudom, Jiranuwat, Kalbitzer, Liv, Wu, Xiancheng, Martin, Steve, Kroy, Klaus, Pompe, Tilo 04 May 2022 (has links)
Extracellular matrix stiffening of breast tissues has been clinically correlated with malignant transformation and poor prognosis. An increase of collagen fibril diameter and lysyl-oxidase mediated crosslinking has been observed in advanced tumor stages. Many current reports suggest that the local mechanical properties of single fibrillar components dominantly regulate cancer cell behavior. Here, we demonstrate by an independent control of fibril diameter and intrafibrillar crosslinking of threedimensional (3D) collagen matrices that fibril bending stiffness instructs cell behavior of invasive and non-invasive breast cancer cells. Two types of collagen matrices with fibril diameter of either 650 nm or 800 nm at a similar pore size of 10 µm were reconstituted and further modified with the zero-length crosslinker 1-ethyl-3-(3-dimethyl aminopropyl)-carbodiimide at concentrations of 0, 20, 100 and 500 mM. This approach yields a set of collagen matrices with overlapping variation of matrix elasticity. Within this set of matrices we could prove the common assumption that matrix elasticity of collagen networks is bending dominated with a linear dependence on fibril bending stiffness. We derive that the measured variation of matrix elasticity is directly correlated to the variation of fibril bending stiffness, being independently controlled either by fibril diameter or by intrafibrillar crosslinking. We use these defined matrices to demonstrate that the adjustment of fibril bending stiffness allows to instruct the behavior of two different breast cancer cell lines, invasive MDA-MB-231 (human breast carcinoma) and non-invasive MCF-7 cells (human breast adenocarcinoma). Invasiveness and spreading of invasive MDA-MB-231 cells as well as clustering of non-invasive MCF-7 cells is thereby investigated over a broad parameter range. Our results demonstrate and quantify the direct dependence of cancer cell phenotypes on the matrix mechanical properties on the scale of single fibrils.
|
10 |
Engineered microsystems and their application in the culture and characterization of three-dimensional (3D) breast tumor modelsMenon, Nidhi 26 May 2021 (has links)
Microsystems are a broad category of engineered technologies in the micro and nano scale
that have a diverse range of applications. They are emerging as a powerful tool in the field
of biomedical research, drug discovery, as well as clinical diagnostics and prognostics, especially
with regards to cancer. One of the major challenges in precision and personalized
medicine in cancer lies in the technical difficulties of ex-vivo cell culture and propagation
of the limited number of primary cells derived from patients. Therefore, our aims are to
1. Develop a biologically relevant platform for culturing cancer cells and characterize how
it influences the cell growth and phenotype compared to conventional 2-dimensional(2D)
cell culturing techniques, 2. Isolate secondary metabolites from endophytic fungi and screen
them on the platform for potential anticancer properties in a preliminary drug discovery
pipeline, 3. Design and develop biosensors for quantifying cell responses in real-time within
these systems.
Several biomaterial scaffolds with microscale architectures have been utilized for engineering
the tumor extracellular matrix, but very few studies have thoroughly characterized the
phenotypic changes in their cell models, which is critical for translational applications of biomaterial
systems. The overall objective of these studies is to engineer a biomimetic platform
for the culture of breast cancer cells in vitro and to quantify and profile their phenotypic
changes. In order to do this, we first evaluated a blank-slate matrix consisting of thiolated
collagen, hyaluronic acid and heparin, cross-linked chemically via Michael addition reaction
using diacrylate functionalized poly (ethylene glycol). The hydrogel network was used with
triple-negative breast cancer cells and showed significant changes in characteristics, with
cells self-assembling to form a 3D spheroid morphology, with higher viability, and exhibiting
significantly lower cell death upon chemotherapy treatment, as well as had a decrease in proliferation.
Furthemore, the transcriptomic changes quantified using RNA-Seq and Next-Gen
Sequencing showed the dramatic changes in some of the commonly targeted pathways in cancer
therapy. Furthermore, we were able to show the importance of our biomimetic platform
in the process of drug discovery using fungal endophytes and their secondary metabolites as
the source for potential anticancer molecules. Additionally, we developed gold nanoparticle
and antibody-based (ICAM1 and CD11b) sensors to quantify cell responses spatiotemporally
on our platform. We were able to show quenching of the green fluorescent fluorophores due
to the Förster Resonance Energy Transfer mechanism between the fluorophore and the gold
nanometal surface. We also observed antigen-dependent recovery of fluorescence and inhibition
of energy transfer upon the antibody binding to the cell-surface receptors. Future efforts
are directed towards incorporating the hydrogel system with antigen-dependent sensors in a
conceptually-designed microfluidic platform to spatiotemporally quantify the expression of
surface proteins in various cells of the tumor stroma. This includes the migration,infiltration,
and polarization of specific immune cells. This approach will provide further insight into the
heterogeneity of cells at the single-cell resolution in defined spaces within the 3D microfluidic
platform. / Doctor of Philosophy / Microsystems are a broad category of engineered technologies in the micro and nano scale
that have a diverse range of applications. They are emerging as a powerful tool in the field
of biomedical research, drug discovery, as well as clinical diagnostics and prognostics, especially
with regards to cancer. However, a major challenge in being able to offer personalized
medicine to cancer patients comes from the difficulty of growing cells from the patient's
tumor biopsy in a laboratory for further screening and analysis. There are also limited resources
available for real-time expression of proteins on cell-surfaces, that could be potential
biomarkers and targets for treatment.
Various natural and synthetic polymers are biocompatible and have been used widely in
engineering the tumor extracellular matrix. However, the effect of hydrogels derived from
these polymers on the specific tumor cells are not always well characterized. Our studies
explore the influence of a biohybrid hydrogel on breast cancer cells and our results show that
the microscale architecture of the hydrogel platform works as a suitable scaffold for recapitulating
the 3-dimensional(3D) breast tumor microenvironment, and can also be employed in
the drug discovery process. Additionally, we developed a nano-scale biosensor to enable the
quantification of specific cell-surface proteins in real-time. Ongoing and future efforts are focused
on designing and fabricating a microfluidic device with precise control over the design
of space and special chambers for cell culture. These will be used for studying interactions of
various cells in the tumor microenvironment that influence cancer progression. Integrating
these micro-scale systems, including sensors will allow researchers to quantify cell behavior
in response to the variable factors they are exposed to, as well as provide insight to answer
fundamental questions about cancer biology that are limited by the conventional 2D cell
culture systems.
|
Page generated in 0.0639 seconds