Spelling suggestions: "subject:"extraction dde l’information"" "subject:"extraction dee l’information""
1 |
Automatic taxonomy evaluationGao, Tianjian 12 1900 (has links)
This thesis would not be made possible without the generous support of IATA. / Les taxonomies sont une représentation essentielle des connaissances, jouant un rôle central dans de nombreuses applications riches en connaissances. Malgré cela, leur construction est laborieuse que ce soit manuellement ou automatiquement, et l'évaluation quantitative de taxonomies est un sujet négligé. Lorsque les chercheurs se concentrent sur la construction d'une taxonomie à partir de grands corpus non structurés, l'évaluation est faite souvent manuellement, ce qui implique des biais et se traduit souvent par une reproductibilité limitée. Les entreprises qui souhaitent améliorer leur taxonomie manquent souvent d'étalon ou de référence, une sorte de taxonomie bien optimisée pouvant service de référence.
Par conséquent, des connaissances et des efforts spécialisés sont nécessaires pour évaluer une taxonomie.
Dans ce travail, nous soutenons que l'évaluation d'une taxonomie effectuée automatiquement et de manière reproductible est aussi importante que la génération automatique de telles taxonomies. Nous proposons deux nouvelles méthodes d'évaluation qui produisent des scores moins biaisés: un modèle de classification de la taxonomie extraite d'un corpus étiqueté, et un modèle de langue non supervisé qui sert de source de connaissances pour évaluer les relations hyperonymiques. Nous constatons que nos substituts d'évaluation corrèlent avec les jugements humains et que les modèles de langue pourraient imiter les experts humains dans les tâches riches en connaissances. / Taxonomies are an essential knowledge representation and play an important role in classification and numerous knowledge-rich applications, yet quantitative taxonomy evaluation remains to be overlooked and left much to be desired. While studies focus on automatic taxonomy construction (ATC) for extracting meaningful structures and semantics from large corpora, their evaluation is usually manual and subject to bias and low reproducibility. Companies wishing to improve their domain-focused taxonomies also suffer from lacking ground-truths. In fact, manual taxonomy evaluation requires substantial labour and expert knowledge.
As a result, we argue in this thesis that automatic taxonomy evaluation (ATE) is just as important as taxonomy construction. We propose two novel taxonomy evaluation methods for automatic taxonomy scoring, leveraging supervised classification for labelled corpora and unsupervised language modelling as a knowledge source for unlabelled data. We show that our evaluation proxies can exert similar effects and correlate well with human judgments and that language models can imitate human experts on knowledge-rich tasks.
|
2 |
Non-negative matrix decomposition approaches to frequency domain analysis of music audio signalsWood, Sean 12 1900 (has links)
On étudie l’application des algorithmes de décomposition matricielles tel que la Factorisation Matricielle Non-négative (FMN), aux représentations fréquentielles de signaux audio musicaux. Ces algorithmes, dirigés par une fonction d’erreur de reconstruction, apprennent un ensemble de fonctions de base et un ensemble de coef- ficients correspondants qui approximent le signal d’entrée. On compare l’utilisation de trois fonctions d’erreur de reconstruction quand la FMN est appliquée à des gammes monophoniques et harmonisées: moindre carré, divergence Kullback-Leibler, et une mesure de divergence dépendente de la phase, introduite récemment. Des nouvelles méthodes pour interpréter les décompositions résultantes sont présentées et sont comparées aux méthodes utilisées précédemment qui nécessitent des connaissances du domaine acoustique. Finalement, on analyse la capacité de généralisation des fonctions de bases apprises par rapport à trois paramètres musicaux: l’amplitude, la durée et le type d’instrument. Pour ce faire, on introduit deux algorithmes d’étiquetage des fonctions de bases qui performent mieux que l’approche précédente dans la majorité de nos tests, la tâche d’instrument avec audio monophonique étant la seule exception importante. / We study the application of unsupervised matrix decomposition algorithms such as Non-negative Matrix Factorization (NMF) to frequency domain representations of music audio signals. These algorithms, driven by a given reconstruction error function, learn a set of basis functions and a set of corresponding coefficients that approximate the input signal. We compare the use of three reconstruction error functions when NMF is applied to monophonic and harmonized musical scales: least squares, Kullback-Leibler divergence, and a recently introduced “phase-aware” divergence measure. Novel supervised methods for interpreting the resulting decompositions are presented and compared to previously used methods that rely on domain knowledge. Finally, the ability of the learned basis functions to generalize across musical parameter values including note amplitude, note duration and instrument type, are analyzed. To do so, we introduce two basis function labeling algorithms that outperform the previous labeling approach in the majority of our tests, instrument type with monophonic audio being the only notable exception.
|
3 |
Non-negative matrix decomposition approaches to frequency domain analysis of music audio signalsWood, Sean 12 1900 (has links)
On étudie l’application des algorithmes de décomposition matricielles tel que la Factorisation Matricielle Non-négative (FMN), aux représentations fréquentielles de signaux audio musicaux. Ces algorithmes, dirigés par une fonction d’erreur de reconstruction, apprennent un ensemble de fonctions de base et un ensemble de coef- ficients correspondants qui approximent le signal d’entrée. On compare l’utilisation de trois fonctions d’erreur de reconstruction quand la FMN est appliquée à des gammes monophoniques et harmonisées: moindre carré, divergence Kullback-Leibler, et une mesure de divergence dépendente de la phase, introduite récemment. Des nouvelles méthodes pour interpréter les décompositions résultantes sont présentées et sont comparées aux méthodes utilisées précédemment qui nécessitent des connaissances du domaine acoustique. Finalement, on analyse la capacité de généralisation des fonctions de bases apprises par rapport à trois paramètres musicaux: l’amplitude, la durée et le type d’instrument. Pour ce faire, on introduit deux algorithmes d’étiquetage des fonctions de bases qui performent mieux que l’approche précédente dans la majorité de nos tests, la tâche d’instrument avec audio monophonique étant la seule exception importante. / We study the application of unsupervised matrix decomposition algorithms such as Non-negative Matrix Factorization (NMF) to frequency domain representations of music audio signals. These algorithms, driven by a given reconstruction error function, learn a set of basis functions and a set of corresponding coefficients that approximate the input signal. We compare the use of three reconstruction error functions when NMF is applied to monophonic and harmonized musical scales: least squares, Kullback-Leibler divergence, and a recently introduced “phase-aware” divergence measure. Novel supervised methods for interpreting the resulting decompositions are presented and compared to previously used methods that rely on domain knowledge. Finally, the ability of the learned basis functions to generalize across musical parameter values including note amplitude, note duration and instrument type, are analyzed. To do so, we introduce two basis function labeling algorithms that outperform the previous labeling approach in the majority of our tests, instrument type with monophonic audio being the only notable exception.
|
Page generated in 0.1641 seconds