Spelling suggestions: "subject:"fórmulas dde frenet"" "subject:"fórmulas dde grenet""
1 |
Introdução à geometria diferencial das curvas planas / Introduction to differential geometry of plane curvesHolanda, Felipe D'Angelo January 2015 (has links)
HOLANDA, Felipe D’Angelo. Introdução à geometria diferencial das curvas planas. 2015. 64 f. Dissertação (Mestrado em Matemática em Rede Nacional) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2015. / Submitted by Erivan Almeida (eneiro@bol.com.br) on 2015-09-14T17:46:48Z
No. of bitstreams: 1
2015_dis_fdholanda.pdf: 2177390 bytes, checksum: 53286a68fd72b70cba214a2700429d7c (MD5) / Approved for entry into archive by Rocilda Sales(rocilda@ufc.br) on 2015-09-15T13:11:15Z (GMT) No. of bitstreams: 1
2015_dis_fdholanda.pdf: 2177390 bytes, checksum: 53286a68fd72b70cba214a2700429d7c (MD5) / Made available in DSpace on 2015-09-15T13:11:15Z (GMT). No. of bitstreams: 1
2015_dis_fdholanda.pdf: 2177390 bytes, checksum: 53286a68fd72b70cba214a2700429d7c (MD5)
Previous issue date: 2015 / The intention of this work is to address in basic form and introductory study of Differential Geometry, which in turn has started his studies with Planas curves. It will require a knowledge of Differential Calculus, Integral and Analytic Geometry for better understanding of this work, because as its name says in Differential Geometry comes from the joint study of geometry involving Calculation. So we discuss sub-themes as smooth curves, tangent vector, arc length through formulas of Frenet, evolutas curves and involute and conclude with some important theorems, as the fundamental theorem of plane curves, Jordan 's theorem and the theorem of four vertices. What basically is, Chapter 1, 4 and 6 of the book Introduction to Plane Curves Hilário Alencar and Walcy Santos. / A intenção desse trabalho será de abordar de forma básica e introdutória o estudo da Geometria Diferencial, que por sua vez tem seus estudos iniciados com as Curvas Planas. Será necessário um conhecimento de Cálculo Diferencial, Integral e Geometria Analítica para melhor compreensão desse trabalho, pois como seu próprio nome nos transparece Geometria Diferencial vem de uma junção do estudo da Geometria envolvendo Cálculo. Assim abordaremos subtemas como curvas suaves, vetor tangente, comprimento de arco passando por fórmulas de Frenet, curvas evolutas e involutas e finalizaremos com alguns teoremas importantes, como o teorema fundamental das curvas planas, teorema de Jordan e o teorema dos quatro vértices. O que, basicamente representa, o capítulo 1, 4 e 6 do livro Introdução às Curvas Planas de Hilário Alencar e Walcy Santos.
|
2 |
Teoria de curvas para métricas não-euclidianas.Melo, Fábio Silva 08 July 2016 (has links)
Dissertação de Mestrado apresentada ao Instituto de Matemática, Estatística e Computação Científica, Unicamp, como requisito parcial para obtenção do título de Mestre em Matemática. 2010 / Submitted by Nilson Junior (nilson.junior@unila.edu.br) on 2016-07-08T20:28:03Z
No. of bitstreams: 1
MeloFabioSilva_MP.pdf: 3864560 bytes, checksum: 704d21404c48a187914a0238b121d30e (MD5) / Made available in DSpace on 2016-07-08T21:49:36Z (GMT). No. of bitstreams: 1
MeloFabioSilva_MP.pdf: 3864560 bytes, checksum: 704d21404c48a187914a0238b121d30e (MD5)
Previous issue date: 2010 / A teoria local de curvas da Geometria Diferencial no plano e no espaço euclidiano é bem conhecida (vide referências como [4] e [13]). Este trabalho consiste de uma generalização desta teoria usando métricas arbitrárias. Tal generalização é feita substituindo a matriz identidade que define o produto interno usual por outra matriz quadrada, simétrica e positiva definida. Com este novo produto interno, são estudados conceitos como vetor tangente, vetor normal, vetor binormal, fórmulas de Frenet, curvatura e torção
|
Page generated in 0.4247 seconds