• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Voltage sensor activation and modulation in ion channels

Schwaiger, Christine S January 2012 (has links)
Voltage-gated ion channels play fundamental roles in neural excitability, they are for instance responsible for every single heart beat in our bodies, and dysfunctional channels cause disease that can be even lethal. Understanding how the voltage sensor of these channels function is critical for drug design of compounds targeting neuronal excitability. The opening and closing of the pore in voltage-gated potassium (Kv) channels is caused by the arginine-rich S4 helix of the voltage sensor domain (VSD) moving in response to an external potential. In fact, VSDs are remarkably efficient at turning membrane potential into conformational changes, which likely makes them the smallest existing biological engines. Exactly how this is accomplished is not yet fully known and an area of hot debate, especially due to the lack of structures of the resting and intermediate states along the activation pathway. In this thesis I study how the VSD activation works and show how toxic compounds modulate channel gating through direct interaction with these quite unexplored drug targets. First, I show that a secondary structure transition from alpha- to 3(10)-helix in the S4 helix is an important part of the gating as this helix type is significantly more favorable compared to the -helix in terms of a lower free energy barrier. Second, I present new models for intermediate states along the whole voltage sensor cycle from closed to open and suggest a new gating model for S4, where it moves as a sliding 3(10)-helix. Interestingly, this 3(10)-helix is formed in the region of the single most conserved residue in Kv channels, the phenylalanine F233. Located in the hydrophobic core, it directly faces S4 and creates a structural barrier for the gating charges. Substituting this residue alters the deactivation free energy barrier and can either facilitate the relaxation of the voltage sensor or increase the free energy barrier, depending on the size of the mutant. These results are confirmed by new experimental data that supports that a rigid ring at the phenylalanine position is the rate-limiting factor for the deactivation gating process, while the activation is unaffected. Finally, we study how the activation can be modulated for pharmaceutical reasons. Neurotoxins such as hanatoxin and stromatoxin push S3b towards S4 helix limiting S4's flexibility. This makes it harder for the VSD to activate and might explain the stronger binding affinities in resting state. All these results are highly important both for the general topic of biological macromolecules undergoing functionally critical conformational transitions, as well as the particular case of voltage-gated ion channels where understanding of the gating process is probably the key step to explain the effects of mutations or drug interactions. / <p>QC 20121115</p>
2

Dynamics of the voltage-sensor domain in voltage-gated ion channels : Studies on helical content and hydrophobic barriers within voltage-sensor domains

Schwaiger, Christine S. January 2011 (has links)
Voltage-gated ion channels play fundamental roles in neural excitability and thus dysfunctional channels can cause disease. Understanding how the voltage-sensor of these channels activate and inactivate could potentially be useful in future drug design of compounds targeting neuronal excitability. The opening and closing of the pore in voltage-gated ion channels is caused by the arginine-rich S4 helix of the voltage sensor domain (VSD) moving in response to an external potential. Exactly how this movement is accomplished is not yet fully known and an area of hot debate. In this thesis I study how the opening and closing in voltage-gated potassium (Kv) channels occurs. Recently, both experimental and computational results have pointed to the possibility of a secondary structure transition from α- to 3(10)-helix in S4 being an important part of the gating. First, I show that the 3(10)-helix structure in the S4 helix of a Kv1.2-2.1 chimera protein is significantly more favorable compared to the α-helix in terms of a lower free energy barrier during the gating motion. Additional I suggest a new gating model for S4, moving as sliding 310-helix. Interestingly, the single most conserved residue in voltage- gated ion channels is a phenylalanine located in the hydrophobic core and directly facing S4 causing a barrier for the gating charges. In a second study, I address the problem of the energy barrier and show that mutations of the phenylalanine directly alter the free energy barrier of the open to closed transition for S4. Mutations can either facilitate the relaxation of the voltage-sensor or increase the free energy barrier, depending on the size of the mutant. These results are confirmed by new experimental data that supports that a rigid, cyclic ring at the phenylalanine position is the determining rate-limiting factor for the voltage sensor gating process. / QC 20110616

Page generated in 0.0352 seconds