Spelling suggestions: "subject:"voltagesensor"" "subject:"voltagesuppressor""
1 |
Control of Grid Integrated Voltage Source Converters under Unbalanced Conditions : Development of an On-line Frequency-adaptive Virtual Flux-based ApproachSuul, Jon Are January 2012 (has links)
Three-Phase Voltage Source Converters (VSCs) are finding widespread applications in grid integrated power conversion systems. The control systems of such VSCs are in an increasing number of these applications required to operate during voltage disturbances and unbalanced conditions. Control systems designed for grid side voltagesensor- less operation are at the same time becoming attractive due to the continuous drive for cost reduction and increased reliability of VSCs, but are not commonly applied for operation during unbalanced conditions. Methods for voltage-sensor-less grid synchronization and control of VSCs under unbalanced grid voltage conditions will therefore be the main focus of this Thesis. Estimation methods based on the concept of Virtual Flux, considering the integral of the converter voltage in analogy to the flux of an electric machine, are among the simplest and most well known techniques for achieving voltage-sensor-less grid synchronization. Most of the established techniques for Virtual Flux estimation are, however, either sensitive to grid frequency variations or they are not easily adaptable for operation under unbalanced grid voltage conditions. This Thesis addresses both these issues by proposing a simple approach for Virtual Flux estimation by utilizing a frequency-adaptive filter based on a Second Order Generalized Integrator (SOGI). The proposed approach can be used to achieve on-line frequency-adaptive varieties of conventional strategies for Virtual Flux estimation. The main advantage is, however, that the SOGI-based Virtual Flux estimation can be arranged in a structure that achieves inherent symmetrical component sequence separation under unbalanced conditions. The proposed method for Virtual Flux estimation can be used as a general basis for voltage-sensor-less grid synchronization and control during unbalanced conditions. In this Thesis, the estimated Virtual Flux signals are used to develop a flexible strategy for control of active and reactive power flow, formulated as generalized equations for current reference calculation. A simple, but general, implementation is therefore achieved, where the control objective and the power flow characteristics can be selected according to the requirements of any particular application. Thus, the same control structure can be used to achieve for instance balanced sinusoidal currents or elimination of double frequency active power oscillations during unbalanced conditions. In case of voltage sags, current references corresponding to a specified active or reactive power flow might exceed the current capability of the converter. The limits for active and reactive power transfer during unbalanced conditions have therefore been analyzed, and generalized strategies for current reference calculation when operating under current limitations have been derived. The specified objectives for active and reactive power flow characteristics can therefore be maintained during unbalanced grid conditions, while the average active and reactive power flow is limited to keep the current references within safe values. All concepts and techniques proposed in this Thesis have been verified by simulations and laboratory experiments. The SOGI-based method for Virtual Flux estimation and the strategies for active and reactive power control with current limitation can also be easily adapted for a wide range of applications and can be combined with various types of inner loop control structures. Therefore, the proposed approach can potentially be used as a general basis for Virtual Flux-based voltage-sensor-less operation of VSCs under unbalanced grid voltage conditions.
|
2 |
Voltage sensor activation and modulation in ion channelsSchwaiger, Christine S January 2012 (has links)
Voltage-gated ion channels play fundamental roles in neural excitability, they are for instance responsible for every single heart beat in our bodies, and dysfunctional channels cause disease that can be even lethal. Understanding how the voltage sensor of these channels function is critical for drug design of compounds targeting neuronal excitability. The opening and closing of the pore in voltage-gated potassium (Kv) channels is caused by the arginine-rich S4 helix of the voltage sensor domain (VSD) moving in response to an external potential. In fact, VSDs are remarkably efficient at turning membrane potential into conformational changes, which likely makes them the smallest existing biological engines. Exactly how this is accomplished is not yet fully known and an area of hot debate, especially due to the lack of structures of the resting and intermediate states along the activation pathway. In this thesis I study how the VSD activation works and show how toxic compounds modulate channel gating through direct interaction with these quite unexplored drug targets. First, I show that a secondary structure transition from alpha- to 3(10)-helix in the S4 helix is an important part of the gating as this helix type is significantly more favorable compared to the -helix in terms of a lower free energy barrier. Second, I present new models for intermediate states along the whole voltage sensor cycle from closed to open and suggest a new gating model for S4, where it moves as a sliding 3(10)-helix. Interestingly, this 3(10)-helix is formed in the region of the single most conserved residue in Kv channels, the phenylalanine F233. Located in the hydrophobic core, it directly faces S4 and creates a structural barrier for the gating charges. Substituting this residue alters the deactivation free energy barrier and can either facilitate the relaxation of the voltage sensor or increase the free energy barrier, depending on the size of the mutant. These results are confirmed by new experimental data that supports that a rigid ring at the phenylalanine position is the rate-limiting factor for the deactivation gating process, while the activation is unaffected. Finally, we study how the activation can be modulated for pharmaceutical reasons. Neurotoxins such as hanatoxin and stromatoxin push S3b towards S4 helix limiting S4's flexibility. This makes it harder for the VSD to activate and might explain the stronger binding affinities in resting state. All these results are highly important both for the general topic of biological macromolecules undergoing functionally critical conformational transitions, as well as the particular case of voltage-gated ion channels where understanding of the gating process is probably the key step to explain the effects of mutations or drug interactions. / <p>QC 20121115</p>
|
3 |
Electrostatic Networks and Mechanisms of ΔpH-Dependent Gating in the Human Voltage-Gated Proton Channel Hv1Bennett, Ashley L 01 January 2019 (has links)
The structure of the voltage-gated proton (H+) channel Hv1 is homologous to the voltage sensor domain (VSD) of tetrameric voltage-gated Na+, K+ and Ca2+ channels (VGCs), but lacks a pore domain and instead forms a homodimer. Similar to other VSD proteins, Hv1 is gated by changes in membrane potential (V), but unlike VGCs, voltage-dependent gating in Hv1 is modulated by changes in the transmembrane pH gradient (DpH = pHo - pHi). In Hv1, pHo or pHi changes shift the open probability (POPEN)-V relation by ~40 mV per pH unit. To better understand the structural basis of pHo-dependent gating in Hv1, we constructed new resting- and activated-state Hv1 VSD homology models using physical constraints determined from experimental data measured under voltage clamp and conducted all-atom molecular dynamics (MD) simulations. Analyses of salt bridges and calculated pKas at conserved side chains suggests the existence of intracellular and extracellular electrostatic networks (ICEN and ECEN, respectively) that stabilize resting- or activated-state conformations of the Hv1 VSD. Structural analyses led to a novel hypothesis: two ECEN residues (E119 and D185) with coupled pKas coordinately interact with two S4 ‘gating charge’ Arg residues to modulate activated-state pHo sensitivity. Experimental data confirm that pH-dependent gating is compromised at acidic pHo in Hv1 E119A-D185A mutants, indicating that specific ECEN residue interactions are critical components of the ∆pH-dependent gating mechanism. E119 and D185 are known to participate in extracellular Zn2+ coordination, suggesting that H+ and Zn2+ utilize similar mechanisms to allosterically modulate the activated/resting state equilibrium in Hv1.
|
4 |
Design of radio frequency energy harvesting system : for use in implantable sensorsEbrahimi, Amir, Kihlberg, David January 2022 (has links)
Implantable biomedical wireless sensors provide monitoring of vital health signs such as oxygen, temperature and intraocular pressure and may help to analyse and detect diseases in humans and animals. However, one of the design challenges of implantable devices is providing a safe and reliable energy source. Replaceable batteries are one of the most common methods for powering up implantable devices and have been used in e.g.cardiac pacemakers for decades. However, the need for a regular battery replacement may require surgical incisions. Multiple studies have been done on energy harvesting from ambient energy sources to provide the required power for the operation of the implantable sensor and thus reducing the need for battery replacement. In this work, a circuit-level radio frequency (RF) energy harvesting system has been designed and simulated in 65 nm CMOS process technology. The system consists of an AC-DC converter, a DC-DC converter, a Ring oscillator, a Buffer, and a Voltage sensor with comparators, dividers and a reference generator. The rectifier operates at a frequency of 900 MHz and offers a power conversion efficiency (PCE) of 71%. The doubler works at 50 MHz with a voltage conversion efficiency (VCE) of 98%. Additionally, the Voltage sensor monitors the voltage level of the energy-storing unit, that in this project is intended to be an mm-size rechargeable battery. If the voltage level is equal to or higher than a threshold value, Vref, the harvesting system will be in discharging mode. Similarly, if the voltage level is below Vref, then the system will be in charging mode.
|
5 |
Influence des glycines du lien S4-S5 sur le couplage électromécanique des canaux ioniques dépendants du voltageBarreto, Sandra 03 1900 (has links)
Les canaux potassiques dépendants du voltage sont formés de quatre sous-unités, chacune possédant six segments transmembranaires (S1-S6) et une boucle (p-loop) qui se trouve entre le cinquième et le sixième segment au niveau du pore. Il est connu que le segment senseur du voltage (S1-S4) subit un mouvement lorsque le potentiel membranaire change. Pour ouvrir le canal, il est nécessaire de transférer l'énergie du senseur du voltage (généré par le mouvement des charges positives de S4) au pore. Le mécanisme exact de ce couplage électromécanique est encore sous étude. Un des points de liaison entre le senseur de voltage et le pore est le lien physique fait par le segment S4-S5 (S45L). Le but de cette étude est de déterminer l'influence de la flexibilité du segment S45L sur le processus de couplage. Dans le S45L, trois glycines sont distribuées dans des positions différentes. Elles sont responsables de la flexibilité des hélices-alpha. Ces glycines (mais pas leurs positions exactes) sont conservées pour tous les canaux potassiques dépendants de potentiel. En utilisant la technique de mutagènes dirigé, la glycine a été remplacée dans chacune de ces différentes positions par une alanine et dans une deuxième étape, par une proline (pour introduire un angle dans l'hélice). Pour étudier le comportement des canaux dans cette nouvelle conformation, on a appliqué la technique de « patch clamp » pour déterminer les effets lors de l'ouverture du pore (courant ionique). Avec le « cut-open oocyte voltage-clamp », nous avons étudié les effets sur le mouvement du senseur de voltage (courant “gating”) et la coordination temporelle avec l'ouverture du pore (courant ionique). Les données ont montré qu’en réduisant la flexibilité dans le S45L, il faut avoir plus d'énergie pour faire ouvrir le canal. Le changement pour une proline suggère que le mouvement du senseur est indépendant du pore pendant l'ouverture du canal. / Voltage-gated potassium channels are formed of four subunits, each one with six transmembrane segments (S1-S6) and a loop (p-loop) between S5 and S6 at the level of the pore. It is known that the voltage sensitive segment (S1-S4) undergoes a movement upon membrane potential changes. To open the channel, it is necessary to transfer the energy of the voltage sensor (generated by the displacement of the positive charges of S4) to the pore. The exact mechanism of this “electromechanical coupling” is still under investigation. The voltage sensor and pore are physically linked by the S4-S5 linker (S45L). The aim of this study is to determine the influence of S45L flexibility on the coupling process. In the S45L, three glycines are distributed at different positions and are responsible for the flexibility of the alpha-helix. These glycines (but not their exact position) are conserved within the potassium voltage-gated ion channels. The glycines were each replaced by an alanine using point mutagenesis. In a second step, a proline was introduced at the position in order to introduce a break in the helix. To study the behaviour of channels in this new conformation, we used the patch clamp technique to determine the effects during the pore opening (ionic current). With the cut-open voltage-clamp we determined the effects on voltage sensor movement (gating current) as well as the temporal correlation with the pore opening (ionic current). The data showed that when the flexibility of the S45L is reduced, the channel needs more energy to open. Exchange with proline suggests that the movement of the sensor is independent of pore opening.
|
6 |
Influence des glycines du lien S4-S5 sur le couplage électromécanique des canaux ioniques dépendants du voltageBarreto, Sandra 03 1900 (has links)
Les canaux potassiques dépendants du voltage sont formés de quatre sous-unités, chacune possédant six segments transmembranaires (S1-S6) et une boucle (p-loop) qui se trouve entre le cinquième et le sixième segment au niveau du pore. Il est connu que le segment senseur du voltage (S1-S4) subit un mouvement lorsque le potentiel membranaire change. Pour ouvrir le canal, il est nécessaire de transférer l'énergie du senseur du voltage (généré par le mouvement des charges positives de S4) au pore. Le mécanisme exact de ce couplage électromécanique est encore sous étude. Un des points de liaison entre le senseur de voltage et le pore est le lien physique fait par le segment S4-S5 (S45L). Le but de cette étude est de déterminer l'influence de la flexibilité du segment S45L sur le processus de couplage. Dans le S45L, trois glycines sont distribuées dans des positions différentes. Elles sont responsables de la flexibilité des hélices-alpha. Ces glycines (mais pas leurs positions exactes) sont conservées pour tous les canaux potassiques dépendants de potentiel. En utilisant la technique de mutagènes dirigé, la glycine a été remplacée dans chacune de ces différentes positions par une alanine et dans une deuxième étape, par une proline (pour introduire un angle dans l'hélice). Pour étudier le comportement des canaux dans cette nouvelle conformation, on a appliqué la technique de « patch clamp » pour déterminer les effets lors de l'ouverture du pore (courant ionique). Avec le « cut-open oocyte voltage-clamp », nous avons étudié les effets sur le mouvement du senseur de voltage (courant “gating”) et la coordination temporelle avec l'ouverture du pore (courant ionique). Les données ont montré qu’en réduisant la flexibilité dans le S45L, il faut avoir plus d'énergie pour faire ouvrir le canal. Le changement pour une proline suggère que le mouvement du senseur est indépendant du pore pendant l'ouverture du canal. / Voltage-gated potassium channels are formed of four subunits, each one with six transmembrane segments (S1-S6) and a loop (p-loop) between S5 and S6 at the level of the pore. It is known that the voltage sensitive segment (S1-S4) undergoes a movement upon membrane potential changes. To open the channel, it is necessary to transfer the energy of the voltage sensor (generated by the displacement of the positive charges of S4) to the pore. The exact mechanism of this “electromechanical coupling” is still under investigation. The voltage sensor and pore are physically linked by the S4-S5 linker (S45L). The aim of this study is to determine the influence of S45L flexibility on the coupling process. In the S45L, three glycines are distributed at different positions and are responsible for the flexibility of the alpha-helix. These glycines (but not their exact position) are conserved within the potassium voltage-gated ion channels. The glycines were each replaced by an alanine using point mutagenesis. In a second step, a proline was introduced at the position in order to introduce a break in the helix. To study the behaviour of channels in this new conformation, we used the patch clamp technique to determine the effects during the pore opening (ionic current). With the cut-open voltage-clamp we determined the effects on voltage sensor movement (gating current) as well as the temporal correlation with the pore opening (ionic current). The data showed that when the flexibility of the S45L is reduced, the channel needs more energy to open. Exchange with proline suggests that the movement of the sensor is independent of pore opening.
|
7 |
Modulation de canaux potassiques sensibles au voltage par le phosphatidylinositol-4,5-bisphosphate / Modulation of voltage-gated potassium channels by phosphatidylinositol-4,5-bisphosphateKasimova, Marina 02 December 2014 (has links)
Les canaux potassiques (Kv) dépendants du voltage sont des protéines transmembranaires qui permettent le flux passif d’ions potassium à travers une membrane plasmique lorsque celle-ci est dépolarisée. Ils sont constitués de quatre domaines périphériques sensibles au voltage et un domaine central, un pore, qui délimite un chemin hydrophile pour le passage d’ions. Les domaines sensibles à la tension (VSD) et le pore sont couplés, ce qui signifie que l’activation des VSD déclenche l’ouverture du pore, et qu’un pore ouvert favorise l’activation des VSD. Le phosphatidylinositol-4,5-bisphosphate (PIP2) est un lipide mineur du feuillet interne de la membrane plasmique. Ce lipide fortement chargé négativement module le fonctionnement de plusieurs canaux ioniques, y compris les membres de la famille Kv. En particulier, l’application de ce lipide à Kv1.2 et Kv7.1, deux canaux homologues, augmente leur courant ionique. Cependant, alors que Kv1.2 est capable de s’ouvrir en l’absence de PIP2, dans le cas de Kv7.1, ce lipide est absolument nécessaire pour l’ouverture du canal. En outre, dans Kv1.2, PIP2 induit une perte de fonction, qui est manifesté par un mouvement retardé des VSD. Jusqu’à présent, les mécanismes sous-jacents à de telles modulations des canaux Kv par PIP2 restent inconnus. Dans ce travail, nous tentons de faire la lumière sur ces mécanismes en utilisant des simulations de dynamique moléculaire (DM) combinées avec une approche expérimentale, entreprise par nos collaborateurs. En utilisant des simulations de DM sans contrainte, nous avons identifié les sites potentiels de liaison du PIP2 au Kv1.2. Dans l’un de ces sites, PIP2 interagit avec le canal de sorte à former des ponts salins dépendants de l’état du canal, soit avec le VSD soit avec le pore. Sur la base de ces résultats, nous proposons un modèle pour rationaliser les données expérimentales connues. En outre, nous avons cherché à évaluer quantitativement la perte de fonction induite par la présence de PIP2 au voisinage du VSD du Kv1.2. En particulier, nous avons calculé l’énergie libre des deux premières transitions le long de l’activation du VSD en présence et en l’absence de ce lipide. Nous avons constaté que PIP2 affecte à la fois la stabilité relative des états du VSD et les barrières d’énergie libre qui les séparent. Enfin, nous avons étudié les interactions entre PIP2 et un autre membre de la famille Kv, le canal Kv7.1 cardiaque. Dans le site de liaison de PIP2 que nous avons identifié pour ce canal, l’interaction entre les résidus positifs de Kv7.1 et le lipide sont dépendants de l’état du VSD, comme dans le cas de Kv1.2. On montre que cette interaction est importante pour le couplage entre les VSD et le pore, couplage qui est par ailleurs affaibli à cause de la répulsion électrostatique entre quelques résidus positifs. Ces résultats et prédictions ont été vérifiés par les données expérimentales obtenues par nos collaborateurs / Voltage-gated potassium (Kv) channels are transmembrane proteins that enable the passive flow of potassium ions across a plasma membrane when the latter is depolarized. They consist of four peripheral voltage sensor domains, responding to the applied voltage, and a central pore domain that encompasses a hydrophilic path for passing ions. The voltage sensors and the pore are coupled, meaning that the activation of the voltage sensors triggers the pore opening, and the open pore promotes the activation of the voltage sensors. Phosphatidylinositol-4,5-bisphosphate (PIP2) is a minor lipid of the inner plasma membrane leaflet. This highly negatively charged lipid was shown to modulate the functioning of several ion channels including members of the Kv family. In particular, application of this lipid to Kv1.2 and Kv7.1, two homologous channels, enhances their ionic current. However, while Kv1.2 is able to open without PIP2, in the case of Kv7.1, this lipid is absolutely required for opening. Additionally, in Kv1.2, PIP2 induces a loss of functioning, which is manifested by delayed motions of the voltage sensors. So far, the mechanism underlying the Kv channels modulation by PIP2 remains unknown. In the present manuscript, we attempt to shed light on this mechanism using molecular dynamics (MD) simulations combined with experiments, which was undertaken by our collaborators. Using unconstrained MD simulations, we have identified potential PIP2 binding sites in Kv1.2. In one of these sites, PIP2 interacts with the channel in a state-dependent manner forming salt bridges either with the voltage sensor or with the pore. Based on these findings, we propose a model rationalizing the known experimental data. Further, we aimed to estimate the loss of functioning effect induced by PIP2 on the Kv1.2 voltage sensors. In particular, we have calculated the free energy of the first two transitions along the activation path in the presence and absence of this lipid. We found that PIP2 affects both the relative stability of the voltage sensor states and the free energy barriers separating them. Finally, we studied the interactions between PIP2 and another member of the Kv family, the cardiac channel Kv7.1. In the PIP2 binding site that we have identified for this channel, the interaction between positive residues of Kv7.1 and the lipid was state-dependent, as in the case of Kv1.2. This state-dependent interaction, however, is prominent for coupling between the voltage sensors and the pore, which is otherwise weakened due to electrostatic repulsion of some positive residues. These findings are in a good agreement with the experimental data obtained by our collaborators
|
8 |
Návrh digitálního optického výstupu / Design digital optical outputKubáč, Stanislav January 2009 (has links)
This work descibes general principles of measuring the alternating current and voltage using conventional and unconventional sensors.This work shows specific parmeters conected with principles of the measurement, advantages and disadvantages of individual measuring procedures, types of output signals, precisions, limitations, ways of power and so on. Part of the work is to find optimal measurement procedure, which can be aplicated to practical measuring of alternating currents and voltage. Main part of the work concerns the realisation of optimal method of measuring alternating current.
|
9 |
Studium vlastností membránového napěťového senzoru ASAP1 exprimovaného v buněčné linii HEK 293 / Study of properties of voltage membrane sensor ASAP1 expressed in HEK293 cell lineSanetrníková, Dominika January 2016 (has links)
In the beginning of this thesis is a short introduction into plasmid DNA which is in the form of a vector used in molecular biology. Plasmids can be used in the form of fluorescent probes to measure changes in membrane potential. Into their structure is added a dye called fluorophore. As an important representative of this thesis is a fluorescent probe ASAP1 which contains green fluorescent protein whose response to the membrane potential change is the decrease in the intensity of emitted light. The aim of this thesis was to make chemical transfection of this plasmid into the HEK293 cell line and carry out its characterization. In the work is also described the design of a method for the analysis of the time course of changes in fluorescence depending on the cell membrane depolarisation. In the end of this thesis is also desribed realized experiment including the discussion of aquired results.
|
10 |
Dynamics of the voltage-sensor domain in voltage-gated ion channels : Studies on helical content and hydrophobic barriers within voltage-sensor domainsSchwaiger, Christine S. January 2011 (has links)
Voltage-gated ion channels play fundamental roles in neural excitability and thus dysfunctional channels can cause disease. Understanding how the voltage-sensor of these channels activate and inactivate could potentially be useful in future drug design of compounds targeting neuronal excitability. The opening and closing of the pore in voltage-gated ion channels is caused by the arginine-rich S4 helix of the voltage sensor domain (VSD) moving in response to an external potential. Exactly how this movement is accomplished is not yet fully known and an area of hot debate. In this thesis I study how the opening and closing in voltage-gated potassium (Kv) channels occurs. Recently, both experimental and computational results have pointed to the possibility of a secondary structure transition from α- to 3(10)-helix in S4 being an important part of the gating. First, I show that the 3(10)-helix structure in the S4 helix of a Kv1.2-2.1 chimera protein is significantly more favorable compared to the α-helix in terms of a lower free energy barrier during the gating motion. Additional I suggest a new gating model for S4, moving as sliding 310-helix. Interestingly, the single most conserved residue in voltage- gated ion channels is a phenylalanine located in the hydrophobic core and directly facing S4 causing a barrier for the gating charges. In a second study, I address the problem of the energy barrier and show that mutations of the phenylalanine directly alter the free energy barrier of the open to closed transition for S4. Mutations can either facilitate the relaxation of the voltage-sensor or increase the free energy barrier, depending on the size of the mutant. These results are confirmed by new experimental data that supports that a rigid, cyclic ring at the phenylalanine position is the determining rate-limiting factor for the voltage sensor gating process. / QC 20110616
|
Page generated in 0.0361 seconds