Spelling suggestions: "subject:"voltagegated potassium channels"" "subject:"voltageactivated potassium channels""
1 |
Molecular aspects on voltage-sensor movement /Broomand, Amir, January 2007 (has links) (PDF)
Diss. (sammanfattning) Linköping : Linköpings universitet, 2007. / Härtill 4 uppsatser.
|
2 |
The Metabotropic glutamate receptor mGluR1 regulates the voltage-gated potassium channel Kv1.2 through agonist-dependent and agonist-independent mechanismsMadasu, Sharath Chandra 01 January 2019 (has links)
The voltage gated potassium channel Kv1.2 plays a key role in the central nervous system and mutations in Kv1.2 cause neurological disorders such as epilepsies and ataxias. In the cerebellum, regulation of Kv1.2 is coupled to learning and memory. We have previously shown that blocking Kv1.2 by infusing its specific inhibitor tityustoxin-kα (TsTX) into the lobulus simplex of the cerebellum facilitates eyeblink conditioning (EBC) and that EBC itself modulates Kv1.2 surface expression in cerebellar interneurons. The metabotropic glutamate receptor mGluR1 is required for EBC although the molecular mechanisms are not fully understood. Here we show that infusion of the mGluR1 agonist (S)-3,5-dihydroxyphenylglycine (DHPG) into the lobulus simplex of the cerebellum mimics the facilitating effect of TsTX on EBC. We therefore hypothesize that mGluR1 could act, in part, through suppression of Kv1.2. Earlier studies have shown that Kv1.2 suppression involves channel tyrosine phosphorylation and endocytocytic removal from the cell surface. In this study we report that an excitatory chemical stimulus (50mM K+-100µM glutamate) applied to cerebellar slices enhanced Kv1.2 tyrosine phosphorylation and that this increase was lessened in the presence of the mGluR1 inhibitor YM298198. More direct evidence for mGluR1 modulation of Kv1.2 comes from our finding that selective activation of mGluR1 with DHPG reduced the amount of surface Kv1.2 detected by cell surface biotinylation in cerebellar slices. To determine the molecular pathways involved we used an unbiased mass spectrometry-based proteomics approach to identify Kv1.2-protein interactions that are modulated by mGluR1. Among the interactions enhanced by DHPG were those with PKC-γ, CaMKII, and Gq/G11, each of which had been shown in other studies to co-immunoprecipitate with mGluR1 and contribute to its signaling. Of particular note was the interaction between Kv1.2 and PKC-γ since in HEK cells and hippocampal neurons Kv1.2 endocytosis is elicited by PKC activation. We found that activation of PKCs with PMA reduced surface Kv1.2, while the PKC inhibitor Go6983 attenuated the reduction in surface Kv1.2 levels elicited by DHPG and PMA, suggesting that the mechanism by which mGluR1 modulates cerebellar Kv1.2 likely involves PKC.
mGluR1 has been shown to signal independently of the agonist through a constitutively active, protein kinase A-dependent pathway in the cerebellum. Using HEK293 cells we show that co-expression of mGluR1 increases the surface expression levels of Kv1.2. This effect occurs in absence of mGluR1 agonists and in the presence of a noncompetitive mGluR1 inhibitor YM298198. Co-expression of known downstream effectors of the agonist driven mGluR1 pathway such as PKC-γ, CaMKIIα, Grid2 had no effect on Kv1.2 surface expression or on the ability of mGluR1 agonist to modulate that expression. In contrast, the inverse agonist BAY 36-7620 significantly reduced the mGluR1 effect on Kv1.2 surface expression, as did pharmacological inhibition of PKA with KT5720.
Therefore, mGluR1 is involved in regulation of surface Kv1.2 via dual mechanisms, the agonist dependent mechanism reduces surface Kv1.2 via PKC, while agonist independent constitutive mechanism increases surface Kv1.2 via PKA.
|
3 |
The Role of Potassium Ion and Water Channels in an Animal Model ofMultiple SclerosisJukkola, Peter I. 16 September 2014 (has links)
No description available.
|
4 |
Role of potassium channels in regulating neuronal activity /Klement, Göran, January 2007 (has links)
Diss. (sammanfattning) Stockholm : Karolinska institutet, 2007. / Härtill 5 uppsatser.
|
5 |
Modulation de canaux potassiques sensibles au voltage par le phosphatidylinositol-4,5-bisphosphate / Modulation of voltage-gated potassium channels by phosphatidylinositol-4,5-bisphosphateKasimova, Marina 02 December 2014 (has links)
Les canaux potassiques (Kv) dépendants du voltage sont des protéines transmembranaires qui permettent le flux passif d’ions potassium à travers une membrane plasmique lorsque celle-ci est dépolarisée. Ils sont constitués de quatre domaines périphériques sensibles au voltage et un domaine central, un pore, qui délimite un chemin hydrophile pour le passage d’ions. Les domaines sensibles à la tension (VSD) et le pore sont couplés, ce qui signifie que l’activation des VSD déclenche l’ouverture du pore, et qu’un pore ouvert favorise l’activation des VSD. Le phosphatidylinositol-4,5-bisphosphate (PIP2) est un lipide mineur du feuillet interne de la membrane plasmique. Ce lipide fortement chargé négativement module le fonctionnement de plusieurs canaux ioniques, y compris les membres de la famille Kv. En particulier, l’application de ce lipide à Kv1.2 et Kv7.1, deux canaux homologues, augmente leur courant ionique. Cependant, alors que Kv1.2 est capable de s’ouvrir en l’absence de PIP2, dans le cas de Kv7.1, ce lipide est absolument nécessaire pour l’ouverture du canal. En outre, dans Kv1.2, PIP2 induit une perte de fonction, qui est manifesté par un mouvement retardé des VSD. Jusqu’à présent, les mécanismes sous-jacents à de telles modulations des canaux Kv par PIP2 restent inconnus. Dans ce travail, nous tentons de faire la lumière sur ces mécanismes en utilisant des simulations de dynamique moléculaire (DM) combinées avec une approche expérimentale, entreprise par nos collaborateurs. En utilisant des simulations de DM sans contrainte, nous avons identifié les sites potentiels de liaison du PIP2 au Kv1.2. Dans l’un de ces sites, PIP2 interagit avec le canal de sorte à former des ponts salins dépendants de l’état du canal, soit avec le VSD soit avec le pore. Sur la base de ces résultats, nous proposons un modèle pour rationaliser les données expérimentales connues. En outre, nous avons cherché à évaluer quantitativement la perte de fonction induite par la présence de PIP2 au voisinage du VSD du Kv1.2. En particulier, nous avons calculé l’énergie libre des deux premières transitions le long de l’activation du VSD en présence et en l’absence de ce lipide. Nous avons constaté que PIP2 affecte à la fois la stabilité relative des états du VSD et les barrières d’énergie libre qui les séparent. Enfin, nous avons étudié les interactions entre PIP2 et un autre membre de la famille Kv, le canal Kv7.1 cardiaque. Dans le site de liaison de PIP2 que nous avons identifié pour ce canal, l’interaction entre les résidus positifs de Kv7.1 et le lipide sont dépendants de l’état du VSD, comme dans le cas de Kv1.2. On montre que cette interaction est importante pour le couplage entre les VSD et le pore, couplage qui est par ailleurs affaibli à cause de la répulsion électrostatique entre quelques résidus positifs. Ces résultats et prédictions ont été vérifiés par les données expérimentales obtenues par nos collaborateurs / Voltage-gated potassium (Kv) channels are transmembrane proteins that enable the passive flow of potassium ions across a plasma membrane when the latter is depolarized. They consist of four peripheral voltage sensor domains, responding to the applied voltage, and a central pore domain that encompasses a hydrophilic path for passing ions. The voltage sensors and the pore are coupled, meaning that the activation of the voltage sensors triggers the pore opening, and the open pore promotes the activation of the voltage sensors. Phosphatidylinositol-4,5-bisphosphate (PIP2) is a minor lipid of the inner plasma membrane leaflet. This highly negatively charged lipid was shown to modulate the functioning of several ion channels including members of the Kv family. In particular, application of this lipid to Kv1.2 and Kv7.1, two homologous channels, enhances their ionic current. However, while Kv1.2 is able to open without PIP2, in the case of Kv7.1, this lipid is absolutely required for opening. Additionally, in Kv1.2, PIP2 induces a loss of functioning, which is manifested by delayed motions of the voltage sensors. So far, the mechanism underlying the Kv channels modulation by PIP2 remains unknown. In the present manuscript, we attempt to shed light on this mechanism using molecular dynamics (MD) simulations combined with experiments, which was undertaken by our collaborators. Using unconstrained MD simulations, we have identified potential PIP2 binding sites in Kv1.2. In one of these sites, PIP2 interacts with the channel in a state-dependent manner forming salt bridges either with the voltage sensor or with the pore. Based on these findings, we propose a model rationalizing the known experimental data. Further, we aimed to estimate the loss of functioning effect induced by PIP2 on the Kv1.2 voltage sensors. In particular, we have calculated the free energy of the first two transitions along the activation path in the presence and absence of this lipid. We found that PIP2 affects both the relative stability of the voltage sensor states and the free energy barriers separating them. Finally, we studied the interactions between PIP2 and another member of the Kv family, the cardiac channel Kv7.1. In the PIP2 binding site that we have identified for this channel, the interaction between positive residues of Kv7.1 and the lipid was state-dependent, as in the case of Kv1.2. This state-dependent interaction, however, is prominent for coupling between the voltage sensors and the pore, which is otherwise weakened due to electrostatic repulsion of some positive residues. These findings are in a good agreement with the experimental data obtained by our collaborators
|
6 |
Identification of Molecular Determinants that Shift Co- and Post-Translational N-Glycosylation Kinetics in Type I Transmembrane Peptides: A DissertationMalaby, Heidi L. H. 07 April 2014 (has links)
Asparagine (N)-linked glycosylation occurs on 90% of membrane and secretory proteins and drives folding and trafficking along the secretory pathway. The N-glycan can be attached to an N-X-T/S-Y (X,Y ≠ P) consensus site by one of two oligosaccharyltransferase (OST) STT3 enzymatic isoforms either during protein translation (co-translational) or after protein translation has completed (post-translational). While co-translational N-glycosylation is both rapid and efficient, post-translational N-glycosylation occurs on a much slower time scale and, due to competition with protein degradation and forward trafficking, could be detrimental to the success of a peptide heavily reliant on post-translational N-glycosylation. In evidence, mutations in K+ channel subunits that shift N-glycosylation kinetics have been directly linked to cardiac arrhythmias. My thesis work focuses on identifying primary sequence factors that affect the rate of N-glycosylation.
To identify the molecular determinants that dictate whether a consensus site acquires its initial N-glycan during or after protein synthesis, I used short (~ 100-170 aa) type I transmembrane peptides from the KCNE family (E1-E5) of K+ channel regulatory subunits. The lifetime of these small membrane proteins in the ER translocon is short, which places a significant time constraint on the co-translational N-glycosylation machinery and increases the resolution between co- and post-translational events. Using rapid metabolic pulse-chase experiments described in Chapter II, I identified several molecular determinants among native consensus sites in the KCNE family that favor co-translational N-glycosylation: threonine containing-consensus sites (NXT), multiple N-terminal consensus sites, and long C-termini. The kinetics could also be shifted towards post-translational N-glycosylation by converting to a serine containing-consensus site (NXS), reducing the number of consensus sites in the peptide, and shortening the C-termini.
In Chapter III, I utilized an E2 scaffold peptide to examine the N-glycosylation kinetics of the middle X residue in an NXS consensus site. I found that large hydrophobic and negatively charged residues hinder co-translational N-glycosylation, while polar, small hydrophobic, and positively charged residues had the highest N-glycosylation efficiencies. Poorly N-glycosylated NXS consensus sites with large hydrophobic and negatively charged X residues had a significantly improved co-translational N-glycosylation efficiency upon conversion to NXT sites.
Also in Chapter III, I adapted a siRNA knockdown strategy to definitively identify the OST STT3 isoforms that perform co- and post-translational N-glycosylation for type I transmembrane substrates. I found that the STT3A isoform predominantly performs co-translational N-glycosylation while the STT3B isoform predominantly performs post-translational N-glycosylation, in agreement with the roles of these enzymatic subunits on topologically different substrates.
Taken together, these findings further the ability to predict the success of a consensus site by primary sequence alone and will be helpful for the identification and characterization of N-glycosylation deficiency diseases.
|
7 |
Déterminants moléculaires des propriétés d’ouverture de Kv6.4Lacroix, Gabriel 12 1900 (has links)
Les canaux de potassium voltage-dépendant (Kv) sont des tétramères séparés en 12
familles. Chaque sous-unité est composée de six segments transmembranaires (S1-S6).
Les quatre premiers (S1-S4) forment le senseur de voltage dont le rôle est de détecter des
variations en potentiel membranaire grâce à des acides aminés chargés. Ces acides
aminés vont bouger et ce mouvement va être transmis au second domaine, celui du pore
(S5-S6). Les domaines du pore des quatre sous-unités vont se combiner pour créer le
pore. Ces sous-unités peuvent former des canaux homomériques où chaque sous-unité est
identique ou des canaux hétéromériques avec des membres de la même famille. Kv6.4
(KCNG4) est un membre de la famille de sous-unité silencieuse Kv6. Les familles de
sous-unités silencieuses incluent également Kv5, Kv8 et Kv9. Ils ne peuvent pas former
d’homomères. À la place, il doit former des hétéromères avec Kv2. Les canaux
Kv2.1/Kv6.4 ont des propriétés différentes, lorsque comparées aux homomères de Kv2.1,
particulièrement avec un décalage de l’inactivation vers les négatifs. Avec la technique
du « cut-open voltage clamp fluorometry » (COVCF), nous avons pu déterminer que
l’absence d’une charge positive à la position Kv6.4-Y345 est responsable pour une partie
du décalage tout en étant capable de réduire ce décalage avec la mutation Kv6.4-Y345R.
Nous avons également pu produire l’effet inverse dans Kv2.1 avec Kv2.1-R306Y.
Également, nous avons déterminé que la mutation Kv6.4-L360P trouvée chez des patients
souffrant de migraines mène à cette pathologie à cause d’un problème de trafic où les
sous-unités mutées ne peuvent pas atteindre la surface et produire des canaux
fonctionnels. Ce problème est causé par un bris dans l’hélice alpha du segment S4-S5.
Uniquement des homomères de Kv2.1 se rendent à la surface ce qui réduit l’excitabilité
membranaire. Nous proposons que lorsqu’exprimée dans le ganglion trigéminal, cette
mutation mène à des migraines. / Voltage-gated potassium channels (Kv) are tetramers split into 12 families. Each subunit
is composed of six transmembrane helices (S1-S6). The first four of those (S1-S4) form
the voltage sensor domain whose role it is to detect variations in the membrane potential
through charged amino acids. The movement of those amino acids will be transmitted to
the second domain, the pore domain (S5-S6). The pore domain of all four subunits will
combine to form the ion conducting pore. These subunits can form homomers where all
four subunits are identical or heteromers with members of the same family. Kv6.4
(KCNG4) is a member of the silent subunit family Kv6, which also includes Kv5, Kv8
and Kv9. They cannot form functioning homomers. Instead, they form heteromers with
Kv2. Kv2.1/Kv6.4 channels have different properties when compared to Kv2.1
homomers, particularly a negative shift of the voltage dependence of inactivation. With
the cut-open voltage clamp fluorometry (COVC) technique, we were able to determine
that the absence of a gating charge at position Kv6.4-Y345 is responsible for part of this
shift. We were able to recover part of this shift with the mutation Kv6.4-Y345R. We were
also able to produce the inverse effect in Kv2.1 with the mutation Kv2.1-R306Y. Also,
we determined that the mutation Kv6.4-L360P. which is found in patients suffering from
migraines, leads to this condition because of a trafficking defect caused by the mutation
stopping the subunits from reaching the membrane and making functional channels. The
defect is caused by a kink in the alpha helix of the S4-S5 linker. Only Kv2.1 homomers
reach the membrane which reduces membrane excitability. We propose that when
expressed in the trigeminal ganglion, this mutation leads to migraines because of this
trafficking defect.
|
8 |
Neurotoxinas de anêmonas do mar como ferramentas para o estudo da fisiologia de canais voltagem - dependentes de potássio / Sea anemones neurotoxins as tools to study the physiology of voltage-gated potassium channelsOrts, Diego Jose Belato y 25 April 2013 (has links)
A peçonha das anêmonas do mar é uma fonte de compostos bioativos, incluindo toxinas peptídicas que são ferramentas para o estudo da estrutura e função dos canais voltagem dependentes de K+ (KV). Neste trabalho, quatro neurotoxinas foram purificadas da peçonha das anêmonas do mar Actinia bermudenesis e Bunodosoma caissarum. AbeTx1 e BcsTx4 possuem um motivo estrutural semelhante à das \"kappa-toxinas\" e análises funcionais e estruturais permitiram concluir que são os primeiros membros de um novo (tipo 5) de neurotoxinas de anêmonas do mar que atuam em canais KV. Por sua vez, a similaridade estrutural das toxinas BcsTx 1 e BcsTx2 nos permitiu inferir que estas são membros do já descrito tipo 1 (subtipo 1b) de neurotoxinas de anêmona que também atuam em canais KV. A caracterização funcional foi realizada utilizando-se diferentes subtipos de canais KV, expressos em ovócitos de Xenopus laevis e as medidas eletrofisiológicas foram feitas empregando-se a técnica de \"voltage-clamp\" com dois microelétrodos. AbeTx1, BcsTx1 e BcsTx2 (3 μM) apresentaram uma seletividade de atividade para os subtipos de KV1.1-KV1.3, KV1.6 e Shaker IR, ao passo que a BcsTx4 (3 μM) é somente capaz de bloquear a corrente dos subtipos de KV1.1, KV1.2 e KV1.6. Os mecanismos de ação envolvidos na seletividade da atividade e na potência com que estas se ligam aos seus alvos biológicos foram discutidos com base nos resultados obtidos e análises fisiológicas permitiram propor que estas toxinas atuam como \"armas\" para defesa contra predadores e/ou para captura de presas / The sea anemones venom is a rich source of bioactive compounds, including peptide toxins which are tools for studying the structure and function of voltage-dependent channels K+ (KV). In this work, four neurotoxins were purified from the venom of the sea anemones Actinia bermudenesis and Bunodosoma caissarum. AbeTx1 and BcsTx4 have a structural motif similar to that of kappa-toxins and functional and structural analysis showed that they are the first members of a new type (type 5) of sea anemone neurotoxins acting on KV channels. Moreover, the structural analysis of BcsTx1 and BcsTx2 toxins allowed us to conclude that they are members of the previously described type 1 (subtype 1b) of sea anemone neurotoxins. Functional characterization was performed by means of a wide electrophysiological screening on different KV channels using oocytes of Xenopus laevis and electrophysiological measurements were performed employing the voltage-clamp technique. AbeTx1, BcsTx1 and BcsTx2 (μM) showed a selective activity for KV1.1-KV1.3, KV1.6 and Shaker IR, while BcsTx4 (3 μM) only blocks KV1.1, KV1.2 and KV1.6. The mechanisms involved in potency and selectivity were discussed based on the results obtained and physiological analyses have provided new insights on the role of these toxins in the physiology of the sea anemones
|
9 |
Étude numérique de la formation du complexe protéique formé du canal potassique humain Kv4.2 et de sa sous-unité bêta DPP6.2Morin, Michaël 10 1900 (has links)
No description available.
|
Page generated in 0.0583 seconds