• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Fonction et modulation des canaux potassiques voltage-dépendants : étude par simulations de dynamique moléculaire / On the function and modulation of voltage-gated potassium channels : Insights from large-scale all-atom molecular dynamics simulations

Delemotte, Lucie 22 September 2011 (has links)
Les canaux ioniques voltage-dépendants (CIVD) sont des protéines transmembranaires ubiquitaires impliquées dans la transmission de signaux électriques dans les cellules excitables. Lors de variations du potentiel transmembranaire, ces canaux subissent un changement conformationnel donnant lieu à leur ouverture, médié par des résidus basiques conservés appartenant au domaine sensible à la tension (DST). De nombreux détails de leur fonction ont été révélés par des années de mesures expérimentales mais des questions fondamentales sur leur dynamique à l'échelle moléculaire restent d'actualité. Partant de la structure cristallographique du canal potassique du rat Kv1.2 ouvert, nous avons mené des simulations de dynamique moléculaire du canal inséré dans son environnement lipidique soumis à un potentiel hyperpolarisant. Nous avons suivi la désactivation du DST et ainsi découvrir trois états intermédiaires entre les conformations ouverte et fermée. Les calculs de la charge liée à l'activation ou encore les contacts moléculaires sont en accord avec les résultats expérimentaux, et nous proposons un modèle de la désactivation complète qui réconcilie les modèles divergents. Utilisant ce modèle, nous avons caractérisé certains aspects de la modulation des CIVD: la mutation de résidus basiques spécifiques de S4 impliqués dans des maladies génétiques induit l'apparition de courants de fuite « oméga » en accord avec l'expérience et nous expliquons en partie la modification de la dépendance au voltage des CIVD lorsque les lipides avoisinants sont modifiés chimiquement. Nous concluons en étendant cette étude aux canaux humains de la famille des Kv7 qui sont d'importance physiologique. / Voltage gated ion channels (VGCs) are ubiquitous transmembrane (TM) proteins involved in electrical signaling in excitable cells. Their gating (opening-closing), triggered by changes in the TM voltage, proceeds through a sensing mechanism involving conserved positively charged residues belonging to the voltage sensor domain (VSD). Details on the function of such channels have been revealed thanks to decades of experimental investigations but questions concerning the molecular level function of these proteins still remain under active debate. Starting from the "open state" crystal structure of the rat potassium VGC Kv1.2, we have carried out large-scale all-atom molecular dynamics simulations of the channel embedded in its lipidic environment submitted to a hyperpolarized potential. This allowed to follow the deactivation of the VSD and to uncover three intermediate states between the open and closed conformations. We report gating charge calculations or else state dependent molecular contacts that comply with experimental results and propose accordingly a model of the entire deactivation that conciliates the diverging views proposed so far. Using this model, we further characterize at the molecular level the modulation mechanisms of VGCs: specific mutations of basic residues of the VSD involved in genetic diseases are shown to induce state-dependent "omega" leak currents, in agreement with electrophysiology and a partial conclusion is proposed to explain the alteration of VGC voltage-dependency when the lipids embedding them are chemically modified. We conclude by extending this study to human VGCs (Kv7 family) of physiological relevance.
2

Déterminants moléculaires des propriétés d’ouverture de Kv6.4

Lacroix, Gabriel 12 1900 (has links)
Les canaux de potassium voltage-dépendant (Kv) sont des tétramères séparés en 12 familles. Chaque sous-unité est composée de six segments transmembranaires (S1-S6). Les quatre premiers (S1-S4) forment le senseur de voltage dont le rôle est de détecter des variations en potentiel membranaire grâce à des acides aminés chargés. Ces acides aminés vont bouger et ce mouvement va être transmis au second domaine, celui du pore (S5-S6). Les domaines du pore des quatre sous-unités vont se combiner pour créer le pore. Ces sous-unités peuvent former des canaux homomériques où chaque sous-unité est identique ou des canaux hétéromériques avec des membres de la même famille. Kv6.4 (KCNG4) est un membre de la famille de sous-unité silencieuse Kv6. Les familles de sous-unités silencieuses incluent également Kv5, Kv8 et Kv9. Ils ne peuvent pas former d’homomères. À la place, il doit former des hétéromères avec Kv2. Les canaux Kv2.1/Kv6.4 ont des propriétés différentes, lorsque comparées aux homomères de Kv2.1, particulièrement avec un décalage de l’inactivation vers les négatifs. Avec la technique du « cut-open voltage clamp fluorometry » (COVCF), nous avons pu déterminer que l’absence d’une charge positive à la position Kv6.4-Y345 est responsable pour une partie du décalage tout en étant capable de réduire ce décalage avec la mutation Kv6.4-Y345R. Nous avons également pu produire l’effet inverse dans Kv2.1 avec Kv2.1-R306Y. Également, nous avons déterminé que la mutation Kv6.4-L360P trouvée chez des patients souffrant de migraines mène à cette pathologie à cause d’un problème de trafic où les sous-unités mutées ne peuvent pas atteindre la surface et produire des canaux fonctionnels. Ce problème est causé par un bris dans l’hélice alpha du segment S4-S5. Uniquement des homomères de Kv2.1 se rendent à la surface ce qui réduit l’excitabilité membranaire. Nous proposons que lorsqu’exprimée dans le ganglion trigéminal, cette mutation mène à des migraines. / Voltage-gated potassium channels (Kv) are tetramers split into 12 families. Each subunit is composed of six transmembrane helices (S1-S6). The first four of those (S1-S4) form the voltage sensor domain whose role it is to detect variations in the membrane potential through charged amino acids. The movement of those amino acids will be transmitted to the second domain, the pore domain (S5-S6). The pore domain of all four subunits will combine to form the ion conducting pore. These subunits can form homomers where all four subunits are identical or heteromers with members of the same family. Kv6.4 (KCNG4) is a member of the silent subunit family Kv6, which also includes Kv5, Kv8 and Kv9. They cannot form functioning homomers. Instead, they form heteromers with Kv2. Kv2.1/Kv6.4 channels have different properties when compared to Kv2.1 homomers, particularly a negative shift of the voltage dependence of inactivation. With the cut-open voltage clamp fluorometry (COVC) technique, we were able to determine that the absence of a gating charge at position Kv6.4-Y345 is responsible for part of this shift. We were able to recover part of this shift with the mutation Kv6.4-Y345R. We were also able to produce the inverse effect in Kv2.1 with the mutation Kv2.1-R306Y. Also, we determined that the mutation Kv6.4-L360P. which is found in patients suffering from migraines, leads to this condition because of a trafficking defect caused by the mutation stopping the subunits from reaching the membrane and making functional channels. The defect is caused by a kink in the alpha helix of the S4-S5 linker. Only Kv2.1 homomers reach the membrane which reduces membrane excitability. We propose that when expressed in the trigeminal ganglion, this mutation leads to migraines because of this trafficking defect.
3

Études de type structure fonction des mutations causant l’ataxie épisodique de type I sur les canaux potassiques dépendants du voltage

Petitjean, Dimitri 05 1900 (has links)
Les ataxies épisodiques (EA) d’origine génétique sont un groupe de maladies possédant un phénotype et génotype hétérogènes, mais ont en commun la caractéristique d’un dysfonctionnement cérébelleux intermittent. Les EA de type 1 et 2 sont les plus largement reconnues des ataxies épisodiques autosomiques dominantes et sont causées par un dysfonctionnement des canaux ioniques voltage-dépendants dans les neurones. La présente étude se concentrera sur les mutations causant l'EA-1, retrouvées dans le senseur de voltage (VSD) de Kv1.1, un canal très proche de la famille des canaux Shaker. Nous avons caractérisé les propriétés électrophysiologiques de six mutations différentes à la position F244 et partiellement celles des mutations T284 A/M, R297 K/Q/A/H, I320T, L375F, L399I et S412 C/I dans la séquence du Shaker grâce à la technique du ‘’cut open voltage clamp’’ (COVC). Les mutations de la position F244 situées sur le S1 du canal Shaker sont caractérisées par un décalement des courbes QV et GV vers des potentiels dépolarisants et modifient le couplage fonctionnel entre le domaine VSD et le pore. Un courant de fuite est observé durant la phase d'activation des courants transitoires et peut être éliminé par l'application du 4-AP (4-aminopyridine) ou la réinsertion de l'inactivation de type N mais pas par le TEA (tétraéthylamonium). Dans le but de mieux comprendre les mécanismes moléculaires responsables de la stabilisation d’un état intermédiaire, nous avons étudié séparément la neutralisation des trois premières charges positives du S4 (R1Q, R2Q et R3Q). Il en est ressorti l’existence d’une interaction entre R2 et F244. Une seconde interface entre S1 et le pore proche de la surface extracellulaire agissant comme un second point d'ancrage et responsable des courants de fuite a été mis en lumière. Les résultats suggèrent une anomalie du fonctionnement du VSD empêchant la repolarisation normale de la membrane des cellules nerveuses affectées à la suite d'un potentiel d'action. / The genetic episodic ataxias form a group of disorders with heterogeneous phenotype and genotype, but share the common feature of intermittent cerebellar dysfunction. Episodic ataxia (EA) types 1 and 2 are most widely recognised amongst the autosomal dominant episodic ataxias and are caused by dysfunction of neuronal voltage-gated ion channels. The present study focuses on mutations causing EA-1 located in the voltage sensor domains (VSDs) of Kv1.1. A member of the Shaker channel family. Here, we have characterised the electrophysiological properties of six different mutations at the position of F244 and we also reported the partiality effects of these following mutations T284A/M, R297K/Q/A/H, I320T, L375F, L399I S412C/I on Shaker sequence using the cut open voltage clamp technique (COVC). We have shown that mutations of F244 in the S1 of the Shaker Kv channel positively shift the voltage dependence of the VSD movement and alter functional coupling between VSD and pore domain. The mutations causing immobilization of the VSD movement during activation and deactivation and responsible for creating a leak current during activation, are removed by the application of 4-AP (4-aminopyridine) or by reinsertion of N-type inactivation but not by TEA (tetraethylamonium). Insights into the molecular mechanisms responsible for the stabilization of the intermediate state have been investigated by separately neutralizing the first three charges (R1Q, R2Q and R3Q) in the S4 segment. The result suggests an interaction between R2 and F244 mutants. It was established that a second co-evolved interface exists between S1 and the pore helix near the extracellular surface and it acts as a second anchor point. It is also responsible for generation of leak currents. The results suggest a dysfunction of the VSD in which the affected nerve cells cannot efficiently repolarize following an action potential because of altered delayed rectifier function
4

Études de type structure fonction des mutations causant l’ataxie épisodique de type I sur les canaux potassiques dépendants du voltage

Petitjean, Dimitri 05 1900 (has links)
Les ataxies épisodiques (EA) d’origine génétique sont un groupe de maladies possédant un phénotype et génotype hétérogènes, mais ont en commun la caractéristique d’un dysfonctionnement cérébelleux intermittent. Les EA de type 1 et 2 sont les plus largement reconnues des ataxies épisodiques autosomiques dominantes et sont causées par un dysfonctionnement des canaux ioniques voltage-dépendants dans les neurones. La présente étude se concentrera sur les mutations causant l'EA-1, retrouvées dans le senseur de voltage (VSD) de Kv1.1, un canal très proche de la famille des canaux Shaker. Nous avons caractérisé les propriétés électrophysiologiques de six mutations différentes à la position F244 et partiellement celles des mutations T284 A/M, R297 K/Q/A/H, I320T, L375F, L399I et S412 C/I dans la séquence du Shaker grâce à la technique du ‘’cut open voltage clamp’’ (COVC). Les mutations de la position F244 situées sur le S1 du canal Shaker sont caractérisées par un décalement des courbes QV et GV vers des potentiels dépolarisants et modifient le couplage fonctionnel entre le domaine VSD et le pore. Un courant de fuite est observé durant la phase d'activation des courants transitoires et peut être éliminé par l'application du 4-AP (4-aminopyridine) ou la réinsertion de l'inactivation de type N mais pas par le TEA (tétraéthylamonium). Dans le but de mieux comprendre les mécanismes moléculaires responsables de la stabilisation d’un état intermédiaire, nous avons étudié séparément la neutralisation des trois premières charges positives du S4 (R1Q, R2Q et R3Q). Il en est ressorti l’existence d’une interaction entre R2 et F244. Une seconde interface entre S1 et le pore proche de la surface extracellulaire agissant comme un second point d'ancrage et responsable des courants de fuite a été mis en lumière. Les résultats suggèrent une anomalie du fonctionnement du VSD empêchant la repolarisation normale de la membrane des cellules nerveuses affectées à la suite d'un potentiel d'action. / The genetic episodic ataxias form a group of disorders with heterogeneous phenotype and genotype, but share the common feature of intermittent cerebellar dysfunction. Episodic ataxia (EA) types 1 and 2 are most widely recognised amongst the autosomal dominant episodic ataxias and are caused by dysfunction of neuronal voltage-gated ion channels. The present study focuses on mutations causing EA-1 located in the voltage sensor domains (VSDs) of Kv1.1. A member of the Shaker channel family. Here, we have characterised the electrophysiological properties of six different mutations at the position of F244 and we also reported the partiality effects of these following mutations T284A/M, R297K/Q/A/H, I320T, L375F, L399I S412C/I on Shaker sequence using the cut open voltage clamp technique (COVC). We have shown that mutations of F244 in the S1 of the Shaker Kv channel positively shift the voltage dependence of the VSD movement and alter functional coupling between VSD and pore domain. The mutations causing immobilization of the VSD movement during activation and deactivation and responsible for creating a leak current during activation, are removed by the application of 4-AP (4-aminopyridine) or by reinsertion of N-type inactivation but not by TEA (tetraethylamonium). Insights into the molecular mechanisms responsible for the stabilization of the intermediate state have been investigated by separately neutralizing the first three charges (R1Q, R2Q and R3Q) in the S4 segment. The result suggests an interaction between R2 and F244 mutants. It was established that a second co-evolved interface exists between S1 and the pore helix near the extracellular surface and it acts as a second anchor point. It is also responsible for generation of leak currents. The results suggest a dysfunction of the VSD in which the affected nerve cells cannot efficiently repolarize following an action potential because of altered delayed rectifier function

Page generated in 0.1019 seconds