Spelling suggestions: "subject:"boltage sensor domain"" "subject:"coltage sensor domain""
1 |
Electrostatic Networks and Mechanisms of ΔpH-Dependent Gating in the Human Voltage-Gated Proton Channel Hv1Bennett, Ashley L 01 January 2019 (has links)
The structure of the voltage-gated proton (H+) channel Hv1 is homologous to the voltage sensor domain (VSD) of tetrameric voltage-gated Na+, K+ and Ca2+ channels (VGCs), but lacks a pore domain and instead forms a homodimer. Similar to other VSD proteins, Hv1 is gated by changes in membrane potential (V), but unlike VGCs, voltage-dependent gating in Hv1 is modulated by changes in the transmembrane pH gradient (DpH = pHo - pHi). In Hv1, pHo or pHi changes shift the open probability (POPEN)-V relation by ~40 mV per pH unit. To better understand the structural basis of pHo-dependent gating in Hv1, we constructed new resting- and activated-state Hv1 VSD homology models using physical constraints determined from experimental data measured under voltage clamp and conducted all-atom molecular dynamics (MD) simulations. Analyses of salt bridges and calculated pKas at conserved side chains suggests the existence of intracellular and extracellular electrostatic networks (ICEN and ECEN, respectively) that stabilize resting- or activated-state conformations of the Hv1 VSD. Structural analyses led to a novel hypothesis: two ECEN residues (E119 and D185) with coupled pKas coordinately interact with two S4 ‘gating charge’ Arg residues to modulate activated-state pHo sensitivity. Experimental data confirm that pH-dependent gating is compromised at acidic pHo in Hv1 E119A-D185A mutants, indicating that specific ECEN residue interactions are critical components of the ∆pH-dependent gating mechanism. E119 and D185 are known to participate in extracellular Zn2+ coordination, suggesting that H+ and Zn2+ utilize similar mechanisms to allosterically modulate the activated/resting state equilibrium in Hv1.
|
2 |
Modulation de canaux potassiques sensibles au voltage par le phosphatidylinositol-4,5-bisphosphate / Modulation of voltage-gated potassium channels by phosphatidylinositol-4,5-bisphosphateKasimova, Marina 02 December 2014 (has links)
Les canaux potassiques (Kv) dépendants du voltage sont des protéines transmembranaires qui permettent le flux passif d’ions potassium à travers une membrane plasmique lorsque celle-ci est dépolarisée. Ils sont constitués de quatre domaines périphériques sensibles au voltage et un domaine central, un pore, qui délimite un chemin hydrophile pour le passage d’ions. Les domaines sensibles à la tension (VSD) et le pore sont couplés, ce qui signifie que l’activation des VSD déclenche l’ouverture du pore, et qu’un pore ouvert favorise l’activation des VSD. Le phosphatidylinositol-4,5-bisphosphate (PIP2) est un lipide mineur du feuillet interne de la membrane plasmique. Ce lipide fortement chargé négativement module le fonctionnement de plusieurs canaux ioniques, y compris les membres de la famille Kv. En particulier, l’application de ce lipide à Kv1.2 et Kv7.1, deux canaux homologues, augmente leur courant ionique. Cependant, alors que Kv1.2 est capable de s’ouvrir en l’absence de PIP2, dans le cas de Kv7.1, ce lipide est absolument nécessaire pour l’ouverture du canal. En outre, dans Kv1.2, PIP2 induit une perte de fonction, qui est manifesté par un mouvement retardé des VSD. Jusqu’à présent, les mécanismes sous-jacents à de telles modulations des canaux Kv par PIP2 restent inconnus. Dans ce travail, nous tentons de faire la lumière sur ces mécanismes en utilisant des simulations de dynamique moléculaire (DM) combinées avec une approche expérimentale, entreprise par nos collaborateurs. En utilisant des simulations de DM sans contrainte, nous avons identifié les sites potentiels de liaison du PIP2 au Kv1.2. Dans l’un de ces sites, PIP2 interagit avec le canal de sorte à former des ponts salins dépendants de l’état du canal, soit avec le VSD soit avec le pore. Sur la base de ces résultats, nous proposons un modèle pour rationaliser les données expérimentales connues. En outre, nous avons cherché à évaluer quantitativement la perte de fonction induite par la présence de PIP2 au voisinage du VSD du Kv1.2. En particulier, nous avons calculé l’énergie libre des deux premières transitions le long de l’activation du VSD en présence et en l’absence de ce lipide. Nous avons constaté que PIP2 affecte à la fois la stabilité relative des états du VSD et les barrières d’énergie libre qui les séparent. Enfin, nous avons étudié les interactions entre PIP2 et un autre membre de la famille Kv, le canal Kv7.1 cardiaque. Dans le site de liaison de PIP2 que nous avons identifié pour ce canal, l’interaction entre les résidus positifs de Kv7.1 et le lipide sont dépendants de l’état du VSD, comme dans le cas de Kv1.2. On montre que cette interaction est importante pour le couplage entre les VSD et le pore, couplage qui est par ailleurs affaibli à cause de la répulsion électrostatique entre quelques résidus positifs. Ces résultats et prédictions ont été vérifiés par les données expérimentales obtenues par nos collaborateurs / Voltage-gated potassium (Kv) channels are transmembrane proteins that enable the passive flow of potassium ions across a plasma membrane when the latter is depolarized. They consist of four peripheral voltage sensor domains, responding to the applied voltage, and a central pore domain that encompasses a hydrophilic path for passing ions. The voltage sensors and the pore are coupled, meaning that the activation of the voltage sensors triggers the pore opening, and the open pore promotes the activation of the voltage sensors. Phosphatidylinositol-4,5-bisphosphate (PIP2) is a minor lipid of the inner plasma membrane leaflet. This highly negatively charged lipid was shown to modulate the functioning of several ion channels including members of the Kv family. In particular, application of this lipid to Kv1.2 and Kv7.1, two homologous channels, enhances their ionic current. However, while Kv1.2 is able to open without PIP2, in the case of Kv7.1, this lipid is absolutely required for opening. Additionally, in Kv1.2, PIP2 induces a loss of functioning, which is manifested by delayed motions of the voltage sensors. So far, the mechanism underlying the Kv channels modulation by PIP2 remains unknown. In the present manuscript, we attempt to shed light on this mechanism using molecular dynamics (MD) simulations combined with experiments, which was undertaken by our collaborators. Using unconstrained MD simulations, we have identified potential PIP2 binding sites in Kv1.2. In one of these sites, PIP2 interacts with the channel in a state-dependent manner forming salt bridges either with the voltage sensor or with the pore. Based on these findings, we propose a model rationalizing the known experimental data. Further, we aimed to estimate the loss of functioning effect induced by PIP2 on the Kv1.2 voltage sensors. In particular, we have calculated the free energy of the first two transitions along the activation path in the presence and absence of this lipid. We found that PIP2 affects both the relative stability of the voltage sensor states and the free energy barriers separating them. Finally, we studied the interactions between PIP2 and another member of the Kv family, the cardiac channel Kv7.1. In the PIP2 binding site that we have identified for this channel, the interaction between positive residues of Kv7.1 and the lipid was state-dependent, as in the case of Kv1.2. This state-dependent interaction, however, is prominent for coupling between the voltage sensors and the pore, which is otherwise weakened due to electrostatic repulsion of some positive residues. These findings are in a good agreement with the experimental data obtained by our collaborators
|
Page generated in 0.0656 seconds