• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Structural Analysis of Heterodimeric and Homooligomeric Protein Complexes by 4-D Fast NMR

Wang, Su January 2014 (has links)
<p>A molecular depiction of the assembly, interaction and regulation of protein complexes is essential to the understanding of biological functions of protein complexes. Structural analysis of protein complexes by Nuclear Magnetic Resonance (NMR) has relied heavily on the detection and assignment of intermolecular Nuclear Overhauser Effects (NOEs) that define the interactions of protons at the molecular interface. Intermolecular NOEs have traditionally been detected from 3-D half-filtered NOE experiments by suppressing intramolecular NOEs prior to NOE transfer. However, due to insufficient suppression of undesirable signals and a lack of dispersion in the H dimension, data analysis is complicated by the interference of residual intramolecular NOEs and assignment ambiguity, both of which can lead to distorted or even erroneously packed protein complex structures. Leveraging the recent development of fast NMR technology based on sparse sampling in our lab, we developed a strategy for reliable identification and assignment of intermolecular NOEs using high resolution 4-D NOE difference spectroscopy. Spectral subtraction of individually labeled components from a uniformly labeled protein complex yields an "omit" spectrum containing only intermolecular NOEs with little signal degeneracy. </p><p>The benefit of such a strategy is first demonstrated in structural analysis of a homooligomeric protein complexes, the foldon trimer. We show that intermolecular NOEs collected from the 4-D omit NOE spectrum can be directly utilized for automated structural analysis of the foldon trimer by CYANA, whereas intermolecular NOEs derived from 3-D half-filtered NOE experiments failed to generate a converged structure under the same condition. </p><p>Such a strategy was further demonstrated on a heterodimeric protein complex in translesion sysnthesis (TLS), a DNA damage tolerance pathway. The TLS machinery consists of several translesion DNA polymerases that are recruited to the stalled replication fork in response to monoubiquitinated proliferating cell nuclear antigen (PCNA) in order to bypass DNA lesions encountered during genomic replication. The recruitment and assembly of translesion machinery is heavily dependent on ubiquitin-binding domains, including ubiquitin-binding motifs (UBMs) and ubiquitin-binding zinc fingers (UBZs) that are found in translesion DNA polymerases. Two conserved ubiquitin-binding motifs (UBM1 and UBM2) are found in the Y-family polymerase (Pol) &iota, both of which contribute to ubiquitin-mediated accumulation of Pol &iota during TLS. Although the Pol&iota UBM2-ubiquitin complex has been previous reported by our lab and others, the Pol &iota UBM1-ubiquitin complex has remained a challenge due to significant signal overlap in conventional 3-D NOE spectroscopy. In order to determine the molecular basis for ubiquitin recognition of Pol &iota, we solved the structures of human Pol &iota UBM1 and its complex with ubiquitin by 4-D fast NMR, revealing a signature helix-turn-helix motif that recognizes ubiquitin through an unconventional surface centered at L8 of ubiquitin. Importantly, the use of 4-D omit NOE spectroscopy unambiguously revealed an augmented ubiquitin binding interface that encompasses the C-terminal tail of UBM1.</p><p>4-D omit NOE spectroscopy was also used to study the Fanconi anemia associated protein 20 (FAAP20)-ubiquitin complex within the Fanconi Anemia (FA) complexes required for efficient repair of DNA interstrand crosslinks (ICLs), a process that is mediated by the ubiquitin-binding zinc finger (UBZ) domain of FAAP20. Unexpectedly, we show that the FAAP20-ubiquitin interaction extends beyond the compact UBZ module and is accompanied by transforming the disordered C-terminal tail of FAAP20 into a rigid &beta-loop, with the invariant C-terminal tryptophan (W180 of human FAAP20) emanating toward I44 of ubiquitin for enhanced binding. Accordingly, alanine substitution of the absolutely conserved C-terminal tryptophan residue of FAAP20 abolishes ubiquitin binding and impairs FA core complex-mediated ICL repair <italic>in vivo<italic>.</p><p>Reliable detection and unambiguous assignment of intermolecular NOEs is essential to NMR-based structure determination of protein complexes. The development of 4-D omit NOE spectroscopy in this thesis overcomes many limitations of conventional 3-D half-filtered experiments to allow for reliable detection and unambiguous assignment of intermolecular NOEs of heterodimeric complexes and homooligomeric complexes. These advantages render such a strategy particularly attractive for structural studies of protein complexes by biomolecular NMR.</p> / Dissertation
2

Structure and Implication of the Scaffolding Function of Polymerase Rev1 in Translesion Synthesis and Interstrand Crosslink Repair

Wojtaszek, Jessica Louise January 2015 (has links)
<p>Translesion synthesis is a fundamental biological process that enables DNA replication across lesion sites to ensure timely duplication of genetic information at the cost of replication fidelity, and it is implicated in development of cancer drug resistance after chemotherapy. The eukaryotic Y-family polymerase Rev1 is an essential scaffolding protein in translesion synthesis. Its C-terminal domain (CTD), which interacts with translesion polymerase &#950; through the Rev7 subunit and with polymerases &#954;, &#953; and &#951; in vertebrates through the Rev1-interacting region (RIR), is absolutely required for function. </p><p>In chapter 1, the solution structures of the mouse Rev1 CTD and its complex with the Pol &#954; RIR are reported, revealing an atypical four-helix bundle. Yeast two-hybrid assays were used to identify a Rev7-binding surface centered at the &#945;2-&#945;3 loop and N-terminal half of &#945;3 of the Rev1 CTD. Binding of the mouse Pol &#954; RIR to the Rev1 CTD induces folding of the disordered RIR peptide into a three-turn &#945;-helix, with the helix stabilized by an N-terminal cap. RIR-binding also induces folding of a disordered N-terminal loop of the Rev1 CTD into a &#946;-hairpin that projects over the shallow &#945;1-&#945;2 surface and creates a deep hydrophobic cavity to interact with the essential FF residues juxtaposed on the same side of the RIR helix. The combined structural and biochemical studies reveal two distinct surfaces of the Rev1 CTD that separately mediate the assembly of extension and insertion translesion polymerase complexes.</p><p>The multifaceted abilities of the Rev1 CTD are further explicated in chapter 2 where the purification and structure determination of a quaternary translesion polymerase complex consisting of the Rev1 CTD, the heterodimeric Pol &#950; complex, and the Pol &#954; RIR is reported. Yeast two-hybrid assays were employed to identify important interface residues of the translesion polymerase complex. The structural elucidation of such a quaternary translesion polymerase complex encompassing both insertion and extension polymerases bridged by the Rev1 CTD provides the first molecular explanation of the essential scaffolding function of Rev1 and highlights the Rev1 CTD as a promising target for developing novel cancer therapeutics to suppress translesion synthesis. Our studies support the notion that vertebrate insertion and extension polymerases could structurally cooperate within a mega translesion polymerase complex (translesionsome) nucleated by Rev1 to achieve efficient lesion bypass without incurring an additional switching mechanism.</p><p>Chapter 3 explores the ubiquitin-binding capacity of the FAAP20 UBZ in an effort to begin understanding its requirement for recruitment of the Fanconi anemia complex to interstrand DNA crosslink sites and for interaction with the translesion synthesis machinery through recognition of monoubiquitinated Rev1. FAAP20 is an integral component of the Fanconi anemia core complex that mediates the repair of DNA interstrand crosslinks. Although the UBZ-ubiquitin interaction is thought to be exclusively encapsulated within the &#946;&#946;&#945; module of UBZ, it is revealed that the FAAP20-ubiquitin interaction extends beyond such a canonical zinc-finger motif. Instead, ubiquitin-binding by FAAP20 is accompanied by transforming a disordered tail C-terminal to the UBZ of FAAP20 into a rigid, extended &#946;-loop that latches onto the complex interface of the FAAP20 UBZ and ubiquitin, with the invariant C-terminal tryptophan emanating toward I44Ub for enhanced binding specificity and affinity. Substitution of the C-terminal tryptophan with alanine in FAAP20 not only abolishes FAAP20-ubiquitin binding in vitro, but also causes profound cellular hypersensitivity to DNA interstrand crosslink lesions in vivo, highlighting the indispensable role of the C-terminal tail of FAAP20, beyond the compact zinc finger module, toward ubiquitin recognition and Fanconi anemia complex-mediated DNA interstrand crosslink repair.</p><p>Having structurally elucidated the molecular basis of the essential scaffolding function of the Rev1 CTD, the search for small molecule inhibitors of the Rev1-Rev7 interaction has been initiated toward the goal of developing novel adjuvants to DNA targeting chemotherapeutics. Screening efforts have led to the discovery of a lead compound, JH-RE-06*NaOH, that specifically targets the Rev7-binding hydrophobic pocket of the Rev1 CTD with low micromolar affinity, effectively inhibiting the Rev1-Rev7 interaction in an in vitro ELISA assay developed for high-throughput screening of small molecule libraries. With the potential for positive outcomes in future in vivo assays, we hope to develop JH-RE-06*NaOH into the first potent inhibitor of translesion synthesis in cancer patients being treated with DNA-targetng chemotherapeutics to aid in sensitization and prevention of chemoresistance development in malignancies.</p> / Dissertation

Page generated in 0.0155 seconds