• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 42
  • 7
  • 4
  • 4
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 76
  • 76
  • 11
  • 11
  • 11
  • 10
  • 9
  • 9
  • 9
  • 9
  • 7
  • 7
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Characterisation of the herpes simplex virus type 1 (HSV-1) triplex proteins

Boutell, Christopher John January 2000 (has links)
No description available.
2

Structural studies on an integral membrane light-harvesting complex

McDermott, Gerry January 1997 (has links)
No description available.
3

Structural studies of the inhibition and translocation into Escherichia coli of a ribosome inactivating colicin

Carr, Stephen B. January 2000 (has links)
No description available.
4

Sorting nexin 9 in clathrin-mediated endocytosis /

Lundmark, Richard, January 2004 (has links)
Diss. (sammanfattning) Umeå : Univ., 2004. / Härtill 3 uppsatser.
5

Molecular characterization of protein phosphorylation in plant photosynthetic membranes /

Hansson, Maria, January 2006 (has links)
Diss. (sammanfattning) Linköping : Linköpings universitet, 2006. / Härtill 5 uppsatser.
6

Structural Analysis of Heterodimeric and Homooligomeric Protein Complexes by 4-D Fast NMR

Wang, Su January 2014 (has links)
<p>A molecular depiction of the assembly, interaction and regulation of protein complexes is essential to the understanding of biological functions of protein complexes. Structural analysis of protein complexes by Nuclear Magnetic Resonance (NMR) has relied heavily on the detection and assignment of intermolecular Nuclear Overhauser Effects (NOEs) that define the interactions of protons at the molecular interface. Intermolecular NOEs have traditionally been detected from 3-D half-filtered NOE experiments by suppressing intramolecular NOEs prior to NOE transfer. However, due to insufficient suppression of undesirable signals and a lack of dispersion in the H dimension, data analysis is complicated by the interference of residual intramolecular NOEs and assignment ambiguity, both of which can lead to distorted or even erroneously packed protein complex structures. Leveraging the recent development of fast NMR technology based on sparse sampling in our lab, we developed a strategy for reliable identification and assignment of intermolecular NOEs using high resolution 4-D NOE difference spectroscopy. Spectral subtraction of individually labeled components from a uniformly labeled protein complex yields an "omit" spectrum containing only intermolecular NOEs with little signal degeneracy. </p><p>The benefit of such a strategy is first demonstrated in structural analysis of a homooligomeric protein complexes, the foldon trimer. We show that intermolecular NOEs collected from the 4-D omit NOE spectrum can be directly utilized for automated structural analysis of the foldon trimer by CYANA, whereas intermolecular NOEs derived from 3-D half-filtered NOE experiments failed to generate a converged structure under the same condition. </p><p>Such a strategy was further demonstrated on a heterodimeric protein complex in translesion sysnthesis (TLS), a DNA damage tolerance pathway. The TLS machinery consists of several translesion DNA polymerases that are recruited to the stalled replication fork in response to monoubiquitinated proliferating cell nuclear antigen (PCNA) in order to bypass DNA lesions encountered during genomic replication. The recruitment and assembly of translesion machinery is heavily dependent on ubiquitin-binding domains, including ubiquitin-binding motifs (UBMs) and ubiquitin-binding zinc fingers (UBZs) that are found in translesion DNA polymerases. Two conserved ubiquitin-binding motifs (UBM1 and UBM2) are found in the Y-family polymerase (Pol) &iota, both of which contribute to ubiquitin-mediated accumulation of Pol &iota during TLS. Although the Pol&iota UBM2-ubiquitin complex has been previous reported by our lab and others, the Pol &iota UBM1-ubiquitin complex has remained a challenge due to significant signal overlap in conventional 3-D NOE spectroscopy. In order to determine the molecular basis for ubiquitin recognition of Pol &iota, we solved the structures of human Pol &iota UBM1 and its complex with ubiquitin by 4-D fast NMR, revealing a signature helix-turn-helix motif that recognizes ubiquitin through an unconventional surface centered at L8 of ubiquitin. Importantly, the use of 4-D omit NOE spectroscopy unambiguously revealed an augmented ubiquitin binding interface that encompasses the C-terminal tail of UBM1.</p><p>4-D omit NOE spectroscopy was also used to study the Fanconi anemia associated protein 20 (FAAP20)-ubiquitin complex within the Fanconi Anemia (FA) complexes required for efficient repair of DNA interstrand crosslinks (ICLs), a process that is mediated by the ubiquitin-binding zinc finger (UBZ) domain of FAAP20. Unexpectedly, we show that the FAAP20-ubiquitin interaction extends beyond the compact UBZ module and is accompanied by transforming the disordered C-terminal tail of FAAP20 into a rigid &beta-loop, with the invariant C-terminal tryptophan (W180 of human FAAP20) emanating toward I44 of ubiquitin for enhanced binding. Accordingly, alanine substitution of the absolutely conserved C-terminal tryptophan residue of FAAP20 abolishes ubiquitin binding and impairs FA core complex-mediated ICL repair <italic>in vivo<italic>.</p><p>Reliable detection and unambiguous assignment of intermolecular NOEs is essential to NMR-based structure determination of protein complexes. The development of 4-D omit NOE spectroscopy in this thesis overcomes many limitations of conventional 3-D half-filtered experiments to allow for reliable detection and unambiguous assignment of intermolecular NOEs of heterodimeric complexes and homooligomeric complexes. These advantages render such a strategy particularly attractive for structural studies of protein complexes by biomolecular NMR.</p> / Dissertation
7

Mechanisms of mRNA substrate-selection by the Ccr4-Not deadenylase complex

Webster, Michael William January 2017 (has links)
The level to which genes are expressed depends on the rate at which the mRNA is generated, and the rate at which it is utilised and destroyed. Almost all eukaryotic mRNAs contain a stretch of adenosine nucleotides known as the poly(A) tail. The removal of the polyA tail from an mRNA, a process called deadenylation, is an important mechanism of gene expression regulation. It is the first step in the decay of the transcript, and is also linked to repression of translation. Deadenylation is predominantly catalysed by a conserved multi-protein complex called Ccr4-Not. While the poly(A) tail is a feature of almost all mRNAs, cells control the rate at which each undergoes decay by the precise targeting of Ccr4-Not in both a gene-dependent and a context-dependent fashion. Substrate-selective deadenylation is therefore a central biochemical process to the control of gene expression. It plays a pivotal role in most cellular processes including differentiation, cell cycle control and adaptation to environmental change. The inflammatory response and embryogenesis are two systems in which deadenylation has been well studied. The subject of this dissertation is the biochemical mechanisms by which mRNAs are selected for deadenylation by Ccr4-Not. Despite its importance, intact Ccr4-Not has not previously been obtained in sufficient quantity and purity for rigorous biochemical and structural analysis. Here I present the purification of recombinant Ccr4-Not. An experimental system was devised to quantify the rate and pattern of the deadenylation reaction that it catalyses in vitro. Two models of Ccr4-Not regulation were characterised in detail: the recruitment of Ccr4-Not by RNA-binding adaptor proteins, and the effect of the protein Pab1, which binds to the poly(A) tail. These have yielded insight into the features of the proteins and RNA sequences that are critical to deadenylation. In addition, a structural study of the Ccr4-Not complex was performed using electron cryomicroscopy and single-particle analysis.
8

Mass spectrometry methods for characterising the dynamic behaviour of proteins and protein complexes

Beveridge, Rebecca January 2016 (has links)
Research into the relationship between the structure and function of proteins has been ongoing now for several decades. More recently, there has been an explosion in the investigation of the dynamic properties of proteins, and how their dynamic propensity relates to their function. This new direction in protein research requires new techniques to analyse protein dynamics, since most traditional techniques are biased towards a fixed tertiary structure. Mass spectrometry (MS) is emerging as a powerful tool to probe protein dynamics since it can provide information on interconverting conformations and has no preference towards the folded state. Furthermore, its low sample consumption, rapid data acquisition and low data processing positions MS as an attractive tool in protein structure research. The hybrid technique of ion mobility-mass spectrometry provides further insight into the range of conformations adopted by proteins and protein complexes, by providing information on the size in terms of rotationally averaged collision cross section. The work presented in this thesis considers proteins with a range of structural characteristics. We use ion mobility mass spectrometry to investigate proteins of different extents of disorder, protein complexes with dynamic entities and a system that undergoes structural rearrangement upon ligand binding. First, a framework of mass spectrometry experiments is described which allows identification of the extent of structure and disorder within proteins. This framework is tested on a range of different systems throughout the thesis. Differences in the gas-phase properties of two conformationally dynamic proteins which behave similarly in solution are investigated and from this research we postulate a new ionisation mechanism for partially folded proteins. The dynamic propensity of C-terminal p27 is investigated and compared to two permutants which allows us to delineate how the location of charged residues in a primary sequence affects the structure of a protein. We monitor the 'folding-upon-binding' behaviour of p27 upon association with its binding partners, and how this differs with the order of charged residues in the linear sequence. Finally, we describe the structural rearrangement of Fdc1 upon the binding of its cofactor; a prenylated FMN molecule. This thesis demonstrates the suitability of ion mobility-mass spectrometry for the investigation of dynamic properties of proteins and protein complexes.
9

Targeted Proteomics for the Characterization of Enriched Microbial Protein Isolates and Protein Complexes

Hervey, William Judson 01 December 2009 (has links)
The field of proteomics encompasses the study of identities, interactions, and dynamics of all proteins expressed by a living system. Research in this dissertation blends biochemical and quantitative proteomics techniques to increase the latitude of biological applications for the bottom-up mass spectrometry proteomics approach. Together, isolation of selected protein “targets,” such as multiprotein complexes, and quantitative characterization yields information essential for more detailed understanding of microbial cell function. Often, a challenging aspect of characterizing a variety of biochemically enriched samples is limited protein yield. This dissertation describes an enzymatic proteolysis protocol employing an organic/aqueous solvent that alleviates excessive handling steps to reduce losses during sample preparation for small quantities of protein samples. Presence of artifactual, non-specific proteins in enriched protein complex isolates complicates biological interpretation of specific protein interactions. Heterologous expression of affinity-tagged bait proteins may also cause unintended collateral effects. A series of local and global protein isotope ratio measurements were performed to differentiate authentic interactions from artifactual interactions among affinity-isolated complexes and assess collateral effects, respectively. Protein localization provides clues regarding protein function. To infer protein localization, quantitative proteomics techniques were used to estimate protein enrichment of cold osmotic shock periplasmic isolates. Protein isotope ratios indicating enrichment, combined with identification of amino-terminal signal peptide cleavages, increase confidence of periplasmic localization. Collectively, this dissertation provides a framework for tailoring biochemical and quantitative techniques for targeted characterization of microbial protein isolates.
10

Unraveling Macro-Molecular Machinery by Mass Spectrometry: from Single Proteins to Non-Covalent Protein Complexes

Cheng, Guilong January 2007 (has links)
Presented in this dissertation are studies of protein dynamics and protein/protein interactions using solution phase hydrogen/deuterium exchange in combination with mass spectrometry (HXMS). In addition, gas phase fragmentation behaviors of deuterated peptides are investigated, with the purpose of increasing resolution of the HXMS. In the area of single protein dynamics, two protein systems are studied. Studies on the cytochrome c2 from Rhodobacter capsulatus indicate its domain stability to be similar to that of the horse heart cytochrome c. Further comparison of the exchange kinetics of the cytochrome c2 in its reduced and oxidized state reveals that the so-called hinge region is destabilized upon oxidation. We also applied a similar approach to investigate the conformational changes of photoactive yellow protein when it is transiently converted from the resting state to the signaling state. The central &amp;#946;-sheet of the protein is shown to be destabilized upon photoisomerization of the double bond in the chromophore. Another equally important question when it comes to understanding how proteins work is the interactions between proteins. To this end, two protein complexes are subjected to studies by solution phase hydrogen deuterium exchange and mass spectrometry. In the case of LexA/RecA interaction, both proteins show decreases in their extents of exchange upon complex formation. The potential binding site in LexA was further mapped to the same region that the protein uses to cleave itself upon interacting with RecA. In the sHSP/MDH system, hydrogen/deuterium exchange experiments revealed regions within sHSP-bound MDH that were significantly protected against exchange under heat denaturing condition, indicative of a partially unfolded state. Hydrogen/deuterium exchange therefore provides a way of probing low resolution protein structure within protein complexes that have a high level of heterogeneity. Finally, the feasibility of increasing resolution of HXMS by gas phase peptide fragmentation is investigated by using a peptide with three prolines near the C-terminus. Our data show that deuterium migration indeed occurs during the collision activated dissociation process. Caution is required when interpreting the MS/MS spectra as a way of pinpointing the exact deuterium distribution within peptides.

Page generated in 0.0687 seconds