1 |
Mapeamento de dados genômicos usando escalonamento multidimensional / Representation of genomics data with multidimensional scalingEspezúa Llerena, Soledad 04 June 2008 (has links)
Neste trabalho são exploradas diversas técnicas de escalonamento multidimensional (MDS), com o objetivo de estudar sua aplicabilidade no mapeamento de dados genômicos resultantes da técnica RFLP-PCR, sendo esse mapeamento realizado em espaços de baixa dimensionalidade (2D ou 3D) com o fim de aproveitar a habilidade de análise e interpretação visual que possuem os seres humanos. Foi realizada uma análise comparativa de diversos algoritmos MDS, visando sua aptidão para mapear dados genômicos. Esta análise compreendeu o estudo de alguns índices de desempenho como a precisão no mapeamento, o custo computacional e a capacidade de induzir bons agrupamentos. Para a realização dessa análise foi desenvolvida a ferramenta \"MDSExplorer\", a qual integra os algoritmos estudados e várias opções que permitem comparar os algoritmos e visualizar os mapeamentos. Á análise realizada sobre diversos bancos de dados citados na literatura, sugerem que o algoritmo LANDMARK possui o menor tempo computacional, uma precisão de mapeamento similar aos demais algoritmos, e uma boa capacidade de manter as estruturas existentes nos dados. Finalmente, o MDSExplorer foi usado para mapear um banco de dados genômicos: o banco de estirpes de bactérias fixadoras de nitrogênio, pertencentes ao gênero Bradyrhizobium, com objetivo de ajudar o especialista a inferir visualmente alguma taxonomia nessas estirpes. Os resultados na redução dimensional desse banco de dados sugeriram que a informação relevante (acima dos 60% da variância acumulada) para as regiões 16S, 23S e IGS estaria nas primeiras 5, 4 e 9 dimensões respectivamente. / In this work were studied various Multidimensional Scaling (MDS) techniques intended to apply in the mapping of genomics data obtained of RFLP-PCR technique. This mapping is done in a low dimensional space (2D or 3D), and has the intention of exploiting the visual human capability on analysis and synthesis. A comparative analysis of diverse algorithms MDS was carried out in order to devise its ubiquity in representing genomics data. This analysis covers the study of some indices of performance such as: the precision in the mapping, the computational cost and the capacity to induce good groupings. The purpose of this analysis was developed a software tool called \"MDSExplorer\", which integrates various MDS algorithms and some options that allow to compare the algorithms and to visualize the mappings. The analysis, carried out over diverse datasets cited in the literature, suggest that the algorithm LANDMARK has the lowest computational time, a good precision in the mapping, and a tendency to maintain the existing structures in the data. Finally, MDSExplorer was used to mapping a real genomics dataset: the RFLP-PRC images of a Brazilian collection of bacterial strains belonging to the genus Bradyrhizobium (known by their capability to transform the nitrogen of the atmosphere into compounds useful for the host plants), with the objective to aid the specialist to infer visually a taxonomy in these strains. The results in reduction of dimensionality in this data base, suggest that the relevant information (above 60% of variance accumulated) to the region 16S, 23S and IGS is around 5, 4 and 9 dimensions respectively.
|
2 |
Mapeamento de dados genômicos usando escalonamento multidimensional / Representation of genomics data with multidimensional scalingSoledad Espezúa Llerena 04 June 2008 (has links)
Neste trabalho são exploradas diversas técnicas de escalonamento multidimensional (MDS), com o objetivo de estudar sua aplicabilidade no mapeamento de dados genômicos resultantes da técnica RFLP-PCR, sendo esse mapeamento realizado em espaços de baixa dimensionalidade (2D ou 3D) com o fim de aproveitar a habilidade de análise e interpretação visual que possuem os seres humanos. Foi realizada uma análise comparativa de diversos algoritmos MDS, visando sua aptidão para mapear dados genômicos. Esta análise compreendeu o estudo de alguns índices de desempenho como a precisão no mapeamento, o custo computacional e a capacidade de induzir bons agrupamentos. Para a realização dessa análise foi desenvolvida a ferramenta \"MDSExplorer\", a qual integra os algoritmos estudados e várias opções que permitem comparar os algoritmos e visualizar os mapeamentos. Á análise realizada sobre diversos bancos de dados citados na literatura, sugerem que o algoritmo LANDMARK possui o menor tempo computacional, uma precisão de mapeamento similar aos demais algoritmos, e uma boa capacidade de manter as estruturas existentes nos dados. Finalmente, o MDSExplorer foi usado para mapear um banco de dados genômicos: o banco de estirpes de bactérias fixadoras de nitrogênio, pertencentes ao gênero Bradyrhizobium, com objetivo de ajudar o especialista a inferir visualmente alguma taxonomia nessas estirpes. Os resultados na redução dimensional desse banco de dados sugeriram que a informação relevante (acima dos 60% da variância acumulada) para as regiões 16S, 23S e IGS estaria nas primeiras 5, 4 e 9 dimensões respectivamente. / In this work were studied various Multidimensional Scaling (MDS) techniques intended to apply in the mapping of genomics data obtained of RFLP-PCR technique. This mapping is done in a low dimensional space (2D or 3D), and has the intention of exploiting the visual human capability on analysis and synthesis. A comparative analysis of diverse algorithms MDS was carried out in order to devise its ubiquity in representing genomics data. This analysis covers the study of some indices of performance such as: the precision in the mapping, the computational cost and the capacity to induce good groupings. The purpose of this analysis was developed a software tool called \"MDSExplorer\", which integrates various MDS algorithms and some options that allow to compare the algorithms and to visualize the mappings. The analysis, carried out over diverse datasets cited in the literature, suggest that the algorithm LANDMARK has the lowest computational time, a good precision in the mapping, and a tendency to maintain the existing structures in the data. Finally, MDSExplorer was used to mapping a real genomics dataset: the RFLP-PRC images of a Brazilian collection of bacterial strains belonging to the genus Bradyrhizobium (known by their capability to transform the nitrogen of the atmosphere into compounds useful for the host plants), with the objective to aid the specialist to infer visually a taxonomy in these strains. The results in reduction of dimensionality in this data base, suggest that the relevant information (above 60% of variance accumulated) to the region 16S, 23S and IGS is around 5, 4 and 9 dimensions respectively.
|
3 |
Détection de changement en imagerie satellitaire multimodaleTouati, Redha 04 1900 (has links)
The purpose of this research is to study the detection of temporal changes between
two (or more) multimodal images satellites, i.e., between two different imaging
modalities acquired by two heterogeneous sensors, giving for the same scene two images
encoded differently and depending on the nature of the sensor used for each
acquisition. The two (or multiple) multimodal satellite images are acquired and coregistered
at two different dates, usually before and after an event.
In this study, we propose new models belonging to different categories of multimodal
change detection in remote sensing imagery. As a first contribution, we present a new
constraint scenario expressed on every pair of pixels existing in the before and after
image change. A second contribution of our work is to propose a spatio-temporal textural
gradient operator expressed with complementary norms and also a new filtering
strategy of the difference map resulting from this operator. Another contribution
consists in constructing an observation field from a pair of pixels and to infer a solution
maximum a posteriori sense. A fourth contribution is proposed which consists
to build a common feature space for the two heterogeneous images. Our fifth contribution
lies in the modeling of patterns of change by anomalies and on the analysis
of reconstruction errors which we propose to learn a non-supervised model from a
training base consisting only of patterns of no-change in order that the built model
reconstruct the normal patterns (non-changes) with a small reconstruction error. In
the sixth contribution, we propose a pairwise learning architecture based on a pseudosiamese
CNN network that takes as input a pair of data instead of a single data and
constitutes two partly uncoupled CNN parallel network streams (descriptors) followed
by a decision network that includes fusion layers and a loss layer in the sense of the entropy criterion.
The proposed models are enough flexible to be used effectively in the monomodal
change detection case. / Cette recherche a pour objet l’étude de la détection de changements temporels entre deux (ou plusieurs) images satellitaires multimodales, i.e., avec deux modalités d’imagerie différentes acquises par deux capteurs hétérogènes donnant pour la même scène deux images encodées différemment suivant la nature du capteur utilisé pour chacune des prises de vues. Les deux (ou multiples) images satellitaires multimodales sont prises et co-enregistrées à deux dates différentes, avant et après un événement. Dans le cadre de cette étude, nous proposons des nouveaux modèles de détection de changement en imagerie satellitaire multimodale semi ou non supervisés. Comme première contribution, nous présentons un nouveau scénario de contraintes exprimé sur chaque paire de pixels existant dans l’image avant et après changement. Une deuxième contribution de notre travail consiste à proposer un opérateur de gradient textural spatio-temporel exprimé avec des normes complémentaires ainsi qu’une nouvelle stratégie de dé-bruitage de la carte de différence issue de cet opérateur. Une autre contribution consiste à construire un champ d’observation à partir d’une modélisation par paires de pixels et proposer une solution au sens du maximum a posteriori. Une quatrième contribution est proposée et consiste à construire un espace commun de caractéristiques pour les deux images hétérogènes. Notre cinquième contribution réside dans la modélisation des zones de changement comme étant des anomalies et sur l’analyse des erreurs de reconstruction dont nous proposons d’apprendre un modèle non-supervisé à partir d’une base d’apprentissage constituée seulement de zones de non-changement afin que le modèle reconstruit les motifs de non-changement avec une faible erreur. Dans la dernière contribution, nous proposons une architecture d’apprentissage par paires de pixels basée sur un réseau CNN pseudo-siamois qui prend en entrée une paire de données au lieu d’une seule donnée et est constituée de deux flux de réseau (descripteur) CNN parallèles et partiellement non-couplés suivis d’un réseau de décision qui comprend de couche de fusion et une couche de classification au sens du critère d’entropie. Les modèles proposés s’avèrent assez flexibles pour être utilisés efficacement dans le cas des données-images mono-modales.
|
4 |
Estimation de cartes d'énergie du bruit apériodique de la marche humaine avec une caméra de profondeur pour la détection de pathologies et modèles légers de détection d'objets saillants basés sur l'opposition de couleursNdayikengurukiye, Didier 06 1900 (has links)
Cette thèse a pour objectif l’étude de trois problèmes : l’estimation de cartes de saillance de l’énergie du bruit apériodique de la marche humaine par la perception de profondeur pour la détection de pathologies, les modèles de détection d’objets saillants en général et les modèles légers en particulier par l’opposition de couleurs.
Comme première contribution, nous proposons un système basé sur une caméra de profondeur et un tapis roulant, qui analyse les parties du corps du patient ayant un mouvement irrégulier, en termes de périodicité, pendant la marche. Nous supposons que la marche d'un sujet sain présente n'importe où dans son corps, pendant les cycles de marche, un signal de profondeur avec un motif périodique sans bruit. La présence de bruit et son importance peuvent être utilisées pour signaler la présence et l'étendue de pathologies chez le sujet. Notre système estime, à partir de chaque séquence vidéo, une carte couleur de saillance montrant les zones de fortes irrégularités de marche, en termes de périodicité, appelées énergie de bruit apériodique, de chaque sujet. Notre système permet aussi de détecter automatiquement les cartes des individus sains et ceux malades.
Nous présentons ensuite deux approches pour la détection d’objets saillants. Bien qu’ayant fait l’objet de plusieurs travaux de recherche, la détection d'objets saillants reste un défi. La plupart des modèles traitent la couleur et la texture séparément et les considèrent donc implicitement comme des caractéristiques indépendantes, à tort.
Comme deuxième contribution, nous proposons une nouvelle stratégie, à travers un modèle simple, presque sans paramètres internes, générant une carte de saillance robuste pour une image naturelle. Cette stratégie consiste à intégrer la couleur dans les motifs de texture pour caractériser une micro-texture colorée, ceci grâce au motif ternaire local (LTP) (descripteur de texture simple mais puissant) appliqué aux paires de couleurs. La dissemblance entre chaque paire de micro-textures colorées est calculée en tenant compte de la non-linéarité des micro-textures colorées et en préservant leurs distances, donnant une carte de saillance intermédiaire pour chaque espace de couleur. La carte de saillance finale est leur combinaison pour avoir des cartes robustes.
Le développement des réseaux de neurones profonds a récemment permis des performances élevées. Cependant, il reste un défi de développer des modèles de même performance pour des appareils avec des ressources limitées.
Comme troisième contribution, nous proposons une nouvelle approche pour un modèle léger de réseau neuronal profond de détection d'objets saillants, inspiré par les processus de double opposition du cortex visuel primaire, qui lient inextricablement la couleur et la forme dans la perception humaine des couleurs. Notre modèle proposé, CoSOV1net, est entraîné à partir de zéro, sans utiliser de ``backbones'' de classification d'images ou d'autres tâches. Les expériences sur les ensembles de données les plus utilisés et les plus complexes pour la détection d'objets saillants montrent que CoSOV1Net atteint des performances compétitives avec des modèles de l’état-de-l’art, tout en étant un modèle léger de détection d'objets saillants et pouvant être adapté aux environnements mobiles et aux appareils à ressources limitées. / The purpose of this thesis is to study three problems: the estimation of saliency maps of the aperiodic noise energy of human gait using depth perception for pathology detection, and to study models for salient objects detection in general and lightweight models in particular by color opposition.
As our first contribution, we propose a system based on a depth camera and a treadmill, which analyzes the parts of the patient's body with irregular movement, in terms of periodicity, during walking. We assume that a healthy subject gait presents anywhere in his (her) body, during gait cycles, a depth signal with a periodic pattern without noise. The presence of noise and its importance can be used to point out presence and extent of the subject’s pathologies. Our system estimates, from each video sequence, a saliency map showing the areas of strong gait irregularities, in terms of periodicity, called aperiodic noise energy, of each subject. Our system also makes it possible to automatically detect the saliency map of healthy and sick subjects.
We then present two approaches for salient objects detection. Although having been the subject of many research works, salient objects detection remains a challenge. Most models treat color and texture separately and therefore implicitly consider them as independent feature, erroneously.
As a second contribution, we propose a new strategy through a simple model, almost without internal parameters, generating a robust saliency map for a natural image. This strategy consists in integrating color in texture patterns to characterize a colored micro-texture thanks to the local ternary pattern (LTP) (simple but powerful texture descriptor) applied to the color pairs. The dissimilarity between each colored micro-textures pair is computed considering non-linearity from colored micro-textures and preserving their distances. This gives an intermediate saliency map for each color space. The final saliency map is their combination to have robust saliency map.
The development of deep neural networks has recently enabled high performance. However, it remains a challenge to develop models of the same performance for devices with limited resources.
As a third contribution, we propose a new approach for a lightweight salient objects detection deep neural network model, inspired by the double opponent process in the primary visual cortex, which inextricably links color and shape in human color perception. Our proposed model, namely CoSOV1net, is trained from scratch, without using any image classification backbones or other tasks. Experiments on the most used and challenging datasets for salient objects detection show that CoSOV1Net achieves competitive performance with state-of-the-art models, yet it is a lightweight detection model and it is a salient objects detection that can be adapted to mobile environments and resource-constrained devices.
|
Page generated in 0.0231 seconds