• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 331
  • 157
  • 51
  • 40
  • 17
  • 14
  • 14
  • 11
  • 5
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • Tagged with
  • 856
  • 856
  • 113
  • 106
  • 92
  • 85
  • 75
  • 73
  • 71
  • 70
  • 61
  • 59
  • 59
  • 52
  • 52
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
311

FUNCTIONAL ADAPTATION OF THE RUMINAL EPITHELIUM

2013 December 1900 (has links)
Short chain fatty acids (SCFA) synthesized in the rumen from carbohydrate fermentation are an essential energy source for ruminants. Current literature supports that SCFA are absorbed across the rumen epithelium via passive diffusion or protein-mediated transport, however, the rate and degree to which these pathways adapt to a change in diet fermentability is unknown. Furthermore, Na+ flux is partially determined by SCFA absorption, and thus is a key indicator of functional changes in the rumen epithelium. The objectives of this study were to determine the time required for a change in SCFA and Na+ absorption across the bovine rumen epithelium and to evaluate the rate and degree to which absorption pathways adapt to an increase in diet fermentability relative to changes in surface area. Twenty-five weaned Holstein steer calves were blocked by body weight and randomly assigned to either the control diet (CON; 91.5% hay and 8.5% vitamin/mineral supplement) or a moderately fermentable diet (50% hay; 41.5% barley grain, and 8.5% vitamin/mineral supplement) fed for 3 (G3), 7 (G7), 14 (G14), or 21 d (G21). All calves were fed at 2.25% BW at 0800 h. Reticular pH was recorded every 5 min for 48 h prior to killing (1000 h). Ruminal tissue was collected for Ussing chamber, barrier function, surface area measurements, and gene expression. Net 22Na+ flux (JNET-Na; 80 kBq/15 mL), the rate and pathway of mucosal to serosal 3H-acetate (JMS-acetate; 37 kBq/15 mL) and 14C-butyrate (JMS-butyrate; 74 kBq/15 mL) flux, and serosal to mucosal flux of 3H-mannitol (JSM-mannitol; 74 KBq/15 mL) and tissue conductance were measured. Half of the chambers assigned to measure JMS-acetate and JMS-butyrate were further assigned to 1 of 2 acetate and butyrate concentration treatments: 10 mM (Low) and 50 mM (High). Furthermore, JSM-mannitol flux was also measured during an acidotic and hyperosmotic challenge (CHAL) and recovery (REC) to measure barrier function of ruminal tissue. Mean reticular pH, which was positively correlated with ruminal pH (R2 = 0.5477), decreased from 6.90 for CON to 6.59 for G7 then increased. Net Na+ flux increased 125% within 7 d. Total JMS-acetate and JMS-butyrate increased from CON to G21, where passive diffusion was the primary SCFA absorption pathway. Total JMS-acetate and JMS-butyrate were greater when incubated in High vs. Low. Effective surface area of the ruminal epithelium was not affected by dietary treatment. Increased JSM-mannitol, tissue conductance, and increased expression of IL-1β and TLR2 (tendencies) with increased days fed the moderate grain diet indicated reduced rumen epithelium barrier function. Furthermore, the CHAL treatment reduced barrier function, which was not reversible during REC. This study indicates that a moderate increase in diet fermentability increases rumen epithelium absorptive function in the absence of increased SA, but reduces barrier function. Data from this study also suggests that absorption and barrier function follow different timelines, posing a challenge for ruminant diet adaptation to moderately to highly fermentable diets.
312

THE FATTY ACID-BINDING PROTEIN (fabp) GENES OF SPOTTED GREEN PUFFERFISH (TETRAODON NIGROVIRIDIS) - COMPARATIVE STRUCTURAL GENOMICS AND TISSUE-SPECIFIC DISTRIBUTION OF THEIR TRANSCRIPTS

Thirumaran, Aruloli 04 December 2013 (has links)
The fatty acid-binding protein (fabp) genes belong to the multigene family of intracellular lipid-binding proteins (iLBP). To date, 12 different FABPs have been identified in various vertebrate genomes. Owing to the fish-specific whole genome duplication (FSGD) event, many fishes have duplicated copies of the fabp genes. Here, I identified and characterized the fabp genes of spotted green pufferfish (Tetraodon nigroviridis). Initially, a BLAST search was performed and ten fabp genes were identified, out of which, three were retained in the pufferfish genome as duplicated copies. The putative pufferfish Fabp proteins shared greatest sequence identity and similarity with their teleost and tetrapod orthologs. Conserved gene synteny was evident between the pufferfish fabp genes and human, zebrafish, three-spined stickleback and medaka FABP/fabp genes, providing evidence that the duplicated copies of pufferfish fabp genes most likely arose as a result of the FSGD. The differential tissue-specific distribution of pufferfish fabp transcripts suggests divergent spatial regulation of duplicated pairs of fabp genes.
313

Metabolic Modulation in Heart Disease

Sidhu, Vaninder K. Unknown Date
No description available.
314

EXPLORATIONS IN HOMEOVISCOUS ADAPTATION AND MASS SPECTRAL ANALYSIS OF MEMBRANE LIPIDS

Timmons, Michael Douglas 01 January 2010 (has links)
The focus of this dissertation is centered on the mass spectral analysis of lipids and changes occurring in keeping with the concept of homeoviscous adaptation [1]. Homeoviscous adaptation is the process of modification of membrane lipids in response to environmental stimuli [1]. Dissertation investigations applied this concept to prokaryotic and eukaryotic organisms, and expanded the perception of environmental factors from exogenous organic solvents to intracellular environment. The field of lipidomics deals with the analysis of phospholipid and fatty acid components of membranes the changes that occur due to environmental stimuli and their biological significance [2-6]. The high sensitivity of mass spectrometry (MS) is an ideal tool for lipidomics allowing detection, quantification and structural elucidation [6]. Coupling of a mass spectrometer to a chromatographic system, such as gas chromatograph (GC), allows the separation of fatty acid methyl esters analytes prior to analysis [7]. The research investigations that comprise this dissertation are divided into three interrelated projects. The first project involved the analysis of composition and structure of Clostridium thermocellum membranes from wild-type and ethanol-adapted strains in response to adaptation of cultures to growth in ethanol. The hypothesis being that adaptation of cultures to growth in ethanol would result in compensatory change to the membrane composition. Rat mitochondrial fatty acid profiles isolated from brain, liver, kidney and heart tissues were compared. The hypothesis being that differences in cellular environments found among various tissues would be reflected in the mitochondrial membrane composition. These data support the concept that variations to the lipid content of neurological mitochondria may increase susceptibility to the products of oxidative stress. Lastly, changes in neurological mitochondria as a function of Alzheimer’s disease progression were studied. The hypothesis being that changes to the mitochondrial lipidome would be significantly reflected during advanced stages of AD, in addition to being more prevalent in regions displaying greater pathology. The three interrelated projects increased our understanding of the boundaries established by the concept of homeoviscous adaptation. Project specific hypotheses were supported by data obtained from these investigations.
315

EFFECTS OF LIVESTOCK ANTIBIOTICS ON NITRIFICATION, DENITRIFICATION, AND MICROBIAL COMMUNITY COMPOSITON IN SOILS ALONG A TOPOGRAPHIC GRADIENT

Banerjee, Sagarika 01 January 2010 (has links)
Several types of antibiotics (roxarsone, virginiamycin, and bacitracin) are widely included in poultry feed to improve animal growth yields. Most of the antibiotics are excreted in manure which is subsequently applied to soils. One concern with this practice is that antibiotics may affect several microbially-mediated nutrient cycling reactions in soils that influence crop productivity and water quality. The main objectives of this study were to determine the effects of livestock antibiotics on nitrification, denitrification, and microbial community composition in soils along a topographic gradient. These objectives were addressed in a series of lab experiments by monitoring changes in inorganic N species and ester-linked fatty acid methyl ester profiles after exposing soil microorganisms collected from different topographic positions to increasing levels of antibiotics. It was discovered that roxarsone and virginiamycin inhibited nitrification and soil microbial growth and also influenced microbial community composition, but only at levels that were much higher than expected in poultry litter-applied soils. Bacitracin did not affect nitrification, microbial growth, or microbial community composition at any concentration tested. None of the antibiotics had a strong affect on denitrification. Thus, it is unlikely that soil, water, or air quality would be significantly impacted by the antibiotics contained in poultry litter.
316

Charge behavior in Palm Fatty Acid Ester Oil (PFAE) / pressboard composite insulation system under voltage application

Koide, Hidenobu, Kawanishi, Keizo, Kato, Katsumi, Okubo, Hitoshi, Hayakawa, Naoki, Kojima, Hiroki 06 1900 (has links)
2012 IEEE International Symposium on Electrical Insulation (ISEI), June 10-13, 2012, Ritz Carlton Hotel, San Juan, PR, USA
317

Formulation and evaluation of different transdermal delivery systems with flurbiprofen as marker / Lindi van Zyl.

Van Zyl, Lindi January 2012 (has links)
The aim of this study was to investigate the effect of different penetration enhancers containing essential fatty acids (EFAs) on the transdermal delivery of flurbiprofen. Flurbiprofen was used as a marker / model compound. Fatty acids were chosen as penetration enhancers for their ability to reversibly increase skin permeability through entering the lipid bilayers and disrupting their ordered domains. Fatty acids are natural, non-toxic compounds (Karande & Mitragotri, 2009:2364). Evening primrose oil, vitamin F and Pheroid™ technology all contain fatty acids and were compared using a cream based-formulation. This selection was to ascertain whether EFAs exclusively, or EFAs in a delivery system, would have a significant increase in the transdermal delivery of a compound. For an active pharmaceutical ingredient (API) to be effectively delivered transdermally, it has to be soluble in lipophilic, as well as hydrophilic mediums (Naik et al., 2000:319; Swart et al., 2005:72). This is due to the intricate structure of the skin, where the stratum corneum (outermost layer) is the primary barrier, which regulates skin transport (Barry, 2001:102; Moser et al., 2001:103; Venus et al., 2010:469). Flurbiprofen is highly lipophilic (log P = 4.24) with poor aqueous solubility. It has a molecular weight lower than 500 g/mol indicating that skin permeation may be possible, though the high log P indicates that some difficulty is to be expected (Dollery, 1999:F126; Hadgraft, 2004:292; Swart et al., 2005:72; Karande & Mitragotri, 2009:2363; Drugbank, 2012). In vitro transdermal diffusion studies (utilising vertical Franz diffusion cells) were conducted, using donated abdominal skin from Caucasian females. The studies were conducted over 12 h with extractions of the receptor phase every 2 h to ensure sink conditions. Prior to skin diffusion studies, membrane release studies were performed to determine whether the API was released from the formulation. Membrane release studies were conducted over 6 h and extractions done hourly. Tape stripping experiments were performed on the skin circles after 12 h diffusion studies to determine the concentration flurbiprofen present in the stratum corneum and dermisepidermis. The flurbiprofen concentrations present in the samples were determined using high performance chromatography and a validated method. Membrane release results indicated the following rank order for flurbiprofen from the different formulations: vitamin F > control > evening primrose oil (EPO) >> Pheroid™. The control formulation contained only flurbiprofen and no penetration enhancers. Skin diffusion results on the other hand, indicated that flurbiprofen was present in the stratum corneum and the dermisepidermis. The concentration flurbiprofen present in the receptor phase of the Franz cells (representing human blood) followed the subsequent rank order: EPO > control > vitamin F >> Pheroid™. All the formulations stipulated a lag time shorter than that of the control formulation (1.74 h), with the EPO formulation depicting the shortest (1.36 h). The control formulation presented the highest flux (8.41 μg/cm2.h), with the EPO formulation following the closest (8.12 μg/cm2.h). It could thus be concluded that fatty acids exclusively, rather than in a delivery system, had a significant increase in the transdermal delivery of flurbiprofen. / Thesis (MSc (Pharmaceutics))--North-West University, Potchefstroom Campus, 2013.
318

Formulation and evaluation of different transdermal delivery systems with flurbiprofen as marker / Lindi van Zyl.

Van Zyl, Lindi January 2012 (has links)
The aim of this study was to investigate the effect of different penetration enhancers containing essential fatty acids (EFAs) on the transdermal delivery of flurbiprofen. Flurbiprofen was used as a marker / model compound. Fatty acids were chosen as penetration enhancers for their ability to reversibly increase skin permeability through entering the lipid bilayers and disrupting their ordered domains. Fatty acids are natural, non-toxic compounds (Karande & Mitragotri, 2009:2364). Evening primrose oil, vitamin F and Pheroid™ technology all contain fatty acids and were compared using a cream based-formulation. This selection was to ascertain whether EFAs exclusively, or EFAs in a delivery system, would have a significant increase in the transdermal delivery of a compound. For an active pharmaceutical ingredient (API) to be effectively delivered transdermally, it has to be soluble in lipophilic, as well as hydrophilic mediums (Naik et al., 2000:319; Swart et al., 2005:72). This is due to the intricate structure of the skin, where the stratum corneum (outermost layer) is the primary barrier, which regulates skin transport (Barry, 2001:102; Moser et al., 2001:103; Venus et al., 2010:469). Flurbiprofen is highly lipophilic (log P = 4.24) with poor aqueous solubility. It has a molecular weight lower than 500 g/mol indicating that skin permeation may be possible, though the high log P indicates that some difficulty is to be expected (Dollery, 1999:F126; Hadgraft, 2004:292; Swart et al., 2005:72; Karande & Mitragotri, 2009:2363; Drugbank, 2012). In vitro transdermal diffusion studies (utilising vertical Franz diffusion cells) were conducted, using donated abdominal skin from Caucasian females. The studies were conducted over 12 h with extractions of the receptor phase every 2 h to ensure sink conditions. Prior to skin diffusion studies, membrane release studies were performed to determine whether the API was released from the formulation. Membrane release studies were conducted over 6 h and extractions done hourly. Tape stripping experiments were performed on the skin circles after 12 h diffusion studies to determine the concentration flurbiprofen present in the stratum corneum and dermisepidermis. The flurbiprofen concentrations present in the samples were determined using high performance chromatography and a validated method. Membrane release results indicated the following rank order for flurbiprofen from the different formulations: vitamin F > control > evening primrose oil (EPO) >> Pheroid™. The control formulation contained only flurbiprofen and no penetration enhancers. Skin diffusion results on the other hand, indicated that flurbiprofen was present in the stratum corneum and the dermisepidermis. The concentration flurbiprofen present in the receptor phase of the Franz cells (representing human blood) followed the subsequent rank order: EPO > control > vitamin F >> Pheroid™. All the formulations stipulated a lag time shorter than that of the control formulation (1.74 h), with the EPO formulation depicting the shortest (1.36 h). The control formulation presented the highest flux (8.41 μg/cm2.h), with the EPO formulation following the closest (8.12 μg/cm2.h). It could thus be concluded that fatty acids exclusively, rather than in a delivery system, had a significant increase in the transdermal delivery of flurbiprofen. / Thesis (MSc (Pharmaceutics))--North-West University, Potchefstroom Campus, 2013.
319

Molecular cloning and functional characterization of genes involved in the biosynthesis of polyunsaturated fatty acids in oat (Avena sativa L.)

2014 April 1900 (has links)
This thesis research started with analysis of oat fatty acids by using three different transmethylation methods. Basic sodium methoxide was compared with traditional acidic methanol for the total fatty acid analysis, while diazomethane was used to analyze free fatty acids. Epoxy FAs were readily hydrolyzed to dihydroxy fatty acids under the acidic condition, which suggest an overestimation of hydroxyl fatty acids and underestimation of epoxy fatty acids in previous analyses. The sodium methoxide method proved more reliable to quantify the oat seed fatty acid composition. CDC Dancer oat seed analyzed here was comprised mostly of palmitic acid (PA), oleic acid (OA) and the polyunsaturated fatty acid (PUFA) linoleic acid (LA) in quantities of 23%, 32%, and 37% of total seed FA, respectively. As well, the seed contained small quantities of another PUFA, α-linolenic (ALA) and several unusual oxygenated fatty acids (UFAs), Δ15-hydroxy fatty acid (15HFA) and epoxy fatty acids in quantities of 0.85%, 0.68%, and 2.3%, respectively. This thesis further aimed to identify and assemble all FAD2-like genes from an oat Expressed-Sequence Tag (EST) database using FAD2 and FAD2-like proteins from other organisms as query sequences in order to clone all putative FAD2-like genes-of-interest (GOIs) from oat. From the contig assemblies of retrieved oat ESTs, four distinct, putative genes were identified. From the Δ12-desaturase (FAD2) queries, a putative FAD2-like (AsFAD2) gene was identified; the Δ15-desaturase (FAD3) queries revealed two putative oat FAD3-like (AsFAD3-1 and AsFAD3-2) genes, while an ω-3 desaturase (FAD7) query identified a fourth putative full-length FAD6-like coding sequence of two possible lengths, AsFADX and AsFADX+. The GOIs were then subcloned into a yeast expression vector and functionally characterized. AsFAD2a and AsFAD2b both demonstrated Δ12 desaturation on 18:1-9c substrate. AsFAD3-1 had no activity on any substrates present, while AsFAD3-2 exhibited weak Δ15-desaturation activity specifically on 18:2-9c,12c. Finally, AsFADX converted 18:1-9c to 18:2-9c,12c, while AsFADX+ had no activity. Then, a comparative analysis of transcript levels of these GOIs via quantitative real-time PCR (qRT-PCR) was performed across oat germinating seed, root, leaf, and developing seed. AsFAD2 transcript abundance was generally much higher than AsFAD3-1 and AsFAD3-2 in all tissues. AsFAD3-1 mRNA level was highest in developing seed tissue, slightly lower in leaf tissue, and lowest in root. AsFAD3-2 mRNA was highest in germinating seed, and lowest in leaf tissue. In summary, the data produced from this thesis could be used to enhance breeding efforts for establishing oat cultivars with healthier oil content.
320

Measuring rehabilitation success of coal mining disturbed areas : a spatial and temporal investigation into the use of soil microbial properties as assessment criteria / Sarina Claassens

Claassens, Sarina January 2007 (has links)
The rehabilitation of degraded soils, such as those associated with post-mining sites, requires knowledge of the soil ecosystem and its physical, chemical, and biological composition in order for rehabilitation efforts to fulfil the long-term goal of reconstructing a stable ecosystem for rehabilitated mine soil. This study addresses the need for appropriate assessment criteria to determine the progress of rehabilitation and subsequently the success of management practices. Significant contributions made by this investigation included the establishment of minimum and maximum values for microbial community measurements from two case studies of rehabilitated coal discard sites. Furthermore, it was shown that there was no relationship between changes in microbial community function and structure and the rehabilitation age of the sites. Following this, the considerable impact of management practices on microbial communities was illustrated. The first part of the study investigated the temporal changes in microbial community function and structure in a chronosequence of rehabilitated coal discard sites aged 1 to 11 years. The most important observation made during the investigation of the microbial communities in the different aged soil covers of the rehabilitated coal discard sites, was that there was no relationship between rehabilitation age and microbial activity or abundance of certain microbial groups. What was responsible for a clear differentiation between sites and a shift in microbial community attributes was the management practices applied. A comparison of two chronosequences of rehabilitated coal discard sites was achieved by an application of the 'space-for-time' hypothesis. Sites of different ages and at separate locations ('space') were identified to obtain a chronosequence of ages ('time'). The two chronosequences included sites aged 1 to 11 years (chronosequence A) and 6 to 17 years (chronosequence B), respectively. Sites in the same chronosequence were managed identically, while there was a distinct difference in management practices applied to each chronosequence. The long-term effect of the different management regimes on the soil microbial community function and structure was investigated. Again, there was no relationship between rehabilitation age and microbial community measurements. Fluctuations of selected microbial properties occurred in both chronosequences and similar temporal trends existed over the rehabilitation periods. However, the less intensively managed chronosequence (8) seemed more stable (less fluctuation occurred) over the rehabilitation period than the more intensively managed chronosequence (A). It was therefore concluded that the microbial communities in the less managed sites maintained their functional and structural integrity within bounds in the absence of management inputs or disturbance. While there was similarity in the trends over time for individual microbial community measurements, the seemingly more stable conditions in chronosequence 6 are important in terms of the goal of rehabilitation. / Thesis (Ph.D. (Environmental Science)--North-West University, Potchefstroom Campus, 2007

Page generated in 0.0185 seconds