• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Towards the simulation of biomolecules: optimisation of peptide-capped glycine using FFLUX

Thacker, J.C.R., Wilson, A.L., Hughes, Zak E., Burn, M.J., Maxwell, P.I., Popelier, P.L.A. 11 January 2018 (has links)
Yes / The optimisation of a peptide-capped glycine using the novel force field FFLUX is presented. FFLUX is a force field based on the machine-learning method kriging and the topological energy partitioning method called Interacting Quantum Atoms. FFLUX has a completely different architecture to that of traditional force fields, avoiding (harmonic) potentials for bonded, valence and torsion angles. In this study, FFLUX performs an optimisation on a glycine molecule and successfully recovers the target density-functional theory energy with an error of 0.89 ± 0.03 kJ mol−1. It also recovers the structure of the global minimum with a root-mean-squared deviation of 0.05 Å (excluding hydrogen atoms). We also show that the geometry of the intra-molecular hydrogen bond in glycine is recovered accurately. / EPSRC Established Career Fellowship [grant number EP/K005472]
2

Description of Potential Energy Surfaces of Molecules using FFLUX Machine Learning Models

Hughes, Zak E., Thacker, J.C.R., Wilson, A.L., Popelier, P.L.A. 03 December 2018 (has links)
yes / A new type of model, FFLUX, to describe the interaction between atoms has been developed as an alternative to traditional force fields. FFLUX models are constructed from applying the kriging machine learning method to the topological energy partitioning method, Interacting Quantum Atoms (IQA). The effect of varying parameters in the construction of the FFLUX models is analyzed, with the most dominant effects found to be the structure of the molecule and the number of conformations used to build the model. Using these models the optimization of a variety of small organic molecules is performed, with sub kJ mol-1 accuracy in the energy of the optimized molecules. The FFLUX models are also evaluated in terms of their performance in describing the potential energy surfaces (PESs) associated with specific degrees of freedoms within molecules. While the accurate description of PESs presents greater challenges than individual minima, FFLUX models are able to achieve errors of <2.5 kJ mol-1 across the full C-C-C-C dihedral PES of n-butane, indicating the future possibilities of the technique.
3

FFLUX : towards a force field based on interacting quantum atoms and kriging

Maxwell, Peter January 2017 (has links)
Force fields have been an integral part of computational chemistry for decades, providing invaluable insight and facilitating the better understanding of biomolecular system behaviour. Despite the many benefits of a force field, there continue to be deficiencies as a result of the classical architecture they are based upon. Some deficiencies, such as a point charge electrostatic description instead of a multipole moment description, have been addressed over time, permitted by the ever-increasing computational power available. However, whilst incorporating such significant improvements has improved force field accuracy, many still fail to describe several chemical effects including polarisation, non-covalent interactions and secondary/tertiary structural effects. Furthermore, force fields often fail to provide consistency when compared with other force fields. In other words, no force field is reliably performing more accurately than others, when applied to a variety of related problems. The work presented herein develops a next-generation force field entitled FFLUX, which features a novel architecture very different to any other force field. FFLUX is designed to capture the relationship between geometry and energy through a machine learning method known as kriging. Instead of a series of parameterised potentials, FFLUX uses a collection of atomic energy kriging models to make energy predictions. The energies describing atoms within FFLUX are obtained from the Interacting Quantum Atoms (IQA) energy partitioning approach, which in turn derives the energies from the electron density and nuclear charges of topological atoms described by Quantum Chemical Topology (QCT). IQA energies are shown to provide a unique insight into the relationship between geometry and energy, allowing the identification of explicit atoms and energies contributing towards torsional barriers within various systems. The IQA energies can be modelled to within 2.6% accuracy, as shown for a series of small systems including weakly bound complexes. The energies also allow an interpretation of how an atom feels its surrounding environment through intra-atomic, covalent and electrostatic energetic descriptions, which typically are seen to converge within a ~7 - 8 A horizon radius around an atom or small system. These energy convergence results are particularly relevant to tackling the transferability theme within force field development. Where energies are seen to converge, a proximity limit on the geometrical description needed for a transferable energy model is defined. Finally, the FFLUX force field is validated through successfully optimising distorted geometries of a series of small molecules, to near-ab initio accuracy.

Page generated in 0.0111 seconds