211 |
Treatment of Mililani I Well Water By "Nanofiltration"Chaturvedula, Durgaprasad 08 1900 (has links)
Two nanofiltration membranes, a thin film composite (TFC) membrane, a cellulose triacetate (CTA) membrane, were tested as pretreatment alternatives to extend the effective life of GAC at Mililani Wells I, Oahu, Hawaii. TFC membranes achieved excellent 1,2,3-trichloropropane (TCP), and 1,2-dibromo-3-chloropropane (DBCP) removal percentages whereas CTA membranes performed very poorly. TFC membranes showed promising signs of reducing total organic carbong (TOC) from the nanofiltration unit influent. In Mililani waters, only TCP is present in large amounts. It is suggested that further studies should be conducted where there is a chance of observing membrane's performance against high quantities of 1,2-dibromoethane (EDB), and DBCP. Due to the lack of trained personnel, not many TOC analyses were conducted. It is proven that nanofiltration is a viable treatment alternative and a pilot scale study should be conducted in the future taking economics also into consideration. / Thesis (M. S.)--University of Hawaii at Manoa, 1995. / Includes bibliographical references (leaves 46-48). / UHM: Has both book and microform. / Water Resources Research Center
|
212 |
Structural characterization of the normal and attenuated renal glomerular basement membrane in human specimens :Brennan, James S. Unknown Date (has links)
Thesis (MAppSc (Medical Laboratory Sc)) --University of South Australia, 1993
|
213 |
Analysis of compressible cake behaviour in submerged membrane filtration for water treatmentSantiwong, Suvinai Rensis, Civil & Environmental Engineering, Faculty of Engineering, UNSW January 2008 (has links)
In this study, Smiles?? sorptivity-diffusivity numerical analysis is demonstrated to offer a comprehensive description of dead-end constant-pressure compressible cake filtration for water treatment. In addition to providing an insight on filtration performance and cake behaviour in terms of cake hydraulic permeability and compressibility in good agreement with the results derived using Ruth??s conventional cake filtration theory, the sorptivity-diffusivity model can be used to gain further information on depth-dependent local cake properties and extend our knowledge on the effect of feed suspension conditions (including solution composition, coagulant dosage and mixing) on the characteristics of the particulate assemblages (including size, structure and strength). Feed suspension conditions and primary particle properties exert significant effect on the characteristics of particles in suspensions and the resultant particulate assemblages. In the non-coagulated latex systems, an increase in ionic strength resulted in a suppression of the electric double layer of latex particles as indicated by a significant drop in the zeta potential of the feed suspension which lead to a dramatic reduction in cake hydraulic permeability. In the non-coagulated montmorillonite systems, feed suspensions with high ionic strength (1 M Na+, 50 mM Ca2+ and 50 mM Fe2+) were associated with larger suspended solids which appeared to form assemblages with nematic structures that are denser yet more permeable when compared to those with low ionic strength (0.1 M Na+, 1 mM Ca2+ and 2 mM Fe2+) which appeared to form highly ??cross-linked?? voluminous honeycomb type gel of very low permeability. Pre-coagulation of latex and montmorillonite suspensions with Al-based coagulants (alum and ACH) both resulted in formation of very large flocs which subsequently formed highly permeable solid assemblages. In the latex systems, the ratio of optimal alum to ACH dose was approximately 5:1 on a total coagulant mass basis and 1.3:1 as Al while the ratio of optimal alum to ACH dose was as high as 22:1 on a total coagulant mass basis and 6:1 as Al in the montmorillonite systems. Although both alum and ACH resulted in comparable filtration performances, the distinction in Al concentration and results of local cake properties analysis indicated the presence of different cake structures presumably due to the formation of different Al species.
|
214 |
An Investigation into Membrane Fouling from Algae-containing WatersStork, David Anthony, davids@wgcma.vic.gov.au January 2009 (has links)
Surface waters subject to algal blooms have a high rate of fouling water treatment filtration membrane. These waters typically contain high concentrations of hydrophilic organic carbon compounds such as proteins and polysaccharides. These compounds have been found to contribute greatly to membrane fouling. In this study the fouling propensity, and the components of the fouling layer, for microfiltration (MF) and ultrafiltration (UF) membranes, were characterised for samples taken from a wastewater treatment plant with lagoons prone to algal blooms and a blue-green algae culture (Anabaena circinalis). It was found that the organic carbon compounds released during the growth phase (EOM) of Anabaena circinalis have a similar fouling propensity for UF than those released during the lysis phase (AOM), and a slightly higher fouling propensity for MF. However, due to the presence of higher UV-absorbing hydrophilic compounds, higher concentration of intracellular proteins and/or humic acid-like matter in the AOM, irreversible fouling was significantly higher during the lysis phase.
|
215 |
Removal of geosmin and 2-methylisoborneol from drinking water through biologically active sand filters.McDowall, Bridget January 2008 (has links)
This thesis outlines results of a series of studies investigating the removal of two common taste and odour compounds, 2-methylisoborneol (MIB) and geosmin, from drinking water using biologically active sand filtration. A combination of full-, pilot- and laboratory-scale studies were carried out. A review of long term water quality data from a South Australian water treatment plant indicated that the conventional plant was capable of removing MIB and geosmin to below detection limit without the need for additional treatment. A series of laboratory studies were carried out, validating the theory that the geosmin removal was occurring through biological activity in the rapid gravity filters of the water treatment plant. Microorganisms capable of geosmin removal were found to be present in the settled water of two South Australian water treatment plants, Morgan and Happy Valley. Laboratory sand column experiments were conducted with these waters and a range of sand media, investigating the effect of biofilm development on MIB and geosmin biodegradation. It was found that the process could produce effective removals, however long start-up periods were often required. A laboratory-scale column utilising new sand fed with Happy Valley settled water took in excess of 300 days before it was capable of removing MIB and geosmin by greater than 80%. Studies on sands with inactivated pre-existing biofilms required much shorter biofilm development periods, from 30 to 40 days. The results of the column studies indicated that a method to encourage sand filters to operate biologically for MIB and geosmin removal would be advantageous. Two methods were studied: preozonation and bacterial inoculation. Pre-ozonation was carried out at a pilot plant, constructed at the Happy Valley water treatment plant. Additional factors investigated during this study were the length of the biofilm development period and the impact of empty bed contact time (EBCT). Preozonation is often used in tandem with biological filtration to increase the fraction of biodegradable organic matter and in turn increase the biomass activity of the filter. The pilot plant consisted of two sand filters; one fed with settled water and one fed with preozonated settled water. Pre-ozonation did not enhance the biodegradation of MIB or geosmin. The pre-ozonated column was run for 550 days. Removals of MIB and geosmin were inconsistent throughout the trial. The maximum removal obtained during the study was 80% for MIB and geosmin, at an EBCT of 45 minutes, after 380 days of operation. The settled water column was run for over 650 days. By day 560, the column was able to remove 60% of the influent geosmin and 40% of the influent MIB at an EBCT of 10 minutes, which is close to that used in full-scale plants. Significant effects of empty bed contact time were not noted in the range of 10 to 30 minutes. Bacterial inoculation studies were carried out at laboratory-scale. The inoculum comprised of a geosmin-degrading consortium of three Gram-negative bacteria previously isolated from the biofilm of the Morgan water treatment plant filter sand. A sand column with a pre-existing biofilm was inoculated with the organisms, achieving 70% removal of geosmin. Inoculation of columns without biofilms gave lower geosmin removals, with an average of 41% removal. These were preliminary studies only, and further work is required. A biomass activity assay, based on the concentration of adenosine triphosphate (ATP), was developed over the course of the project. This assay was particularly helpful when studying the attachment of the inoculum in the laboratory columns. Other methods to study biomass were flow cytometry to enumerate the water-borne and biofilm associated bacteria, and scanning electron microscopy to obtain a visual observation of the biofilms on various sands. This work demonstrated the potential of biological sand filtration for MIB and geosmin control. It was shown that long biofilm development periods are evident before effective removal of the compounds can occur. The potential to minimise these long biofilm development periods by inoculation of filters with geosmin degrading organisms was demonstrated. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1340100 / Thesis (Ph.D.) -- University of Adelaide, School of Chemical Engineering, 2008
|
216 |
Internal surface coating and photochemical modification of polypropylene microfiltration membrane /Wang, Li. January 1997 (has links)
Thesis (Ph.D.) -- McMaster University, 1997. / Includes bibliographical references (leaves 175-177). Also available via World Wide Web.
|
217 |
Mechanism studies for crossflow microfiltration with pulsatile flow /Li, Hong-yu. January 1995 (has links)
Thesis (Ph. D.)--University of New South Wales, 1995. / Also available online.
|
218 |
Rheological properties of candle filter deposits at elevated temperatures and pressuresJordan, Brian Robert. January 1900 (has links)
Thesis (M.S.)--West Virginia University, 1998. / Title from document title page. "October 1998." Document formatted into pages; contains viii, 80 p. : ill. Includes abstract. Includes bibliographical references (p. 78-80).
|
219 |
Investigation of the formation of residual ash on candle filtersSimha, Sharath J. January 1998 (has links)
Thesis (M.S.)--West Virginia University, 1998. / Title from document title page. Document formatted into pages; contains xv, 156 p. : ill. (some col.). Vita. Includes abstract. Includes bibliographical references (p. 134-135).
|
220 |
Zeolite packed biologically active filter (biofilter) to reduce odorous emissions from a confined swine building /Stoeckinger, Andrew J. January 1900 (has links)
Thesis (M.S.)--Oregon State University, 2005. / Printout. Includes bibliographical references (leaves 61-69). Also available on the World Wide Web.
|
Page generated in 0.0257 seconds