• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 541
  • 253
  • 123
  • 86
  • 48
  • 39
  • 19
  • 16
  • 12
  • 10
  • 8
  • 6
  • 6
  • 6
  • 6
  • Tagged with
  • 1373
  • 281
  • 211
  • 200
  • 177
  • 175
  • 157
  • 148
  • 130
  • 120
  • 116
  • 81
  • 79
  • 77
  • 74
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
231

Development and application of ultrafiltration and reverse osmosis membranes

Malherbe, Gideon Francois January 1993 (has links)
Thesis (Masters Diploma (Technology)--Cape Technikon, Cape Town,1993 / Various experimental and established membranes were tested on industrial effluents. Ultrafiltration, reverse osmosis and nanofiltration membranes were used in various applications. Research was done on aspects such as the cleaning of fouled membranes, production quality control and process development. Polyvinyl alcohol ultra-thin-film reverse osmosis membranes were manufactured for the desalination of brackish water to a potable standard. The membranes were manufactured in the tubular configuration. Experimental ultrafiltration, reverse osmosis and nanofiltration membranes were tested on cooling water blowdown on a laboratory-scale. On-site testing was done directly on the effluent at a later stage. A s!udy was also conducted to determine the effect of gel-polarization on membrane performance. The gel-layer model was used to predict the limiting flux of specific membranes. Membrane processes were also applied in the fractionation of wine-lees to provide usable by-products such as yeast cells and potassium bitartrate. Ultrafiltration membranes operated in diafiltration mode were used to "wash" the slurry at different solid concentrations. The bitartrate-rich permeate collected from ultrafiltration was then concentrated using reverse osmosis and nanofiltration to allow subsequent precipitation of the product.
232

Polymer composites and nanofiltration membranes and their application in water treatment

Dlamini, Derrick Sibusiso 24 July 2013 (has links)
D.Phil. (Chemistry) / Polycaprolactone (PCL), a linear, biodegradable polymer, and ethylene vinyl acetate (EVA), a branched copolymer, were used to prepare PCNs via the melt-blending method. Organoclay of the type Cloisite® 20A (C20A) and bentonite clay were used as fillers. The results show that the structure of a polymer matrix plays a significant role towards compatibilisation with the silicate layers of the clay. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses revealed an exfoliated-intercalated mixed morphology for the PCL matrix. However, for the EVA matrix, silicate layers agglomerated to form tactoids and resulted primarily in an intercalated morphology. Fourier transform infrared (FT-IR) spectroscopy was used to determine the nature of the interactions between the polymer and the filler. The thermal properties were investigated using thermogravimetric analysis (TGA) and indicated that, with an increase in clay loading, the thermal stability was reduced for both matrices, notwithstanding the type of polymer or clay used. Using EVA and C20A, this study revealed that more exfoliated nanocomposite structures can be obtained by using a modified solution-blending technique. This technique is a hybrid of the melt-blending and solution-blending methods. When compared to the melt-blending method, the modified solution method was found to be an efficient method for producing nanocomposite strips with uniform dispersion of the clay at organoclay loading of 8% and crystallinity by extrusion. However, the melt-blending method produced nanocomposites with high porosity, intercalation and thermal stability whereas the modified solution-blending technique resulted in more intercalated-exfoliated morphology, but less porosity and thermal stability. Despite the positives drawn from the modified solution method, the melt-blending method was used throughout for nanocomposites intended for application in water treatment. This was done because the solution used in the modified solution method could not be completely removed from the nanocomposite. Organic solvents can have a negative effect on the environment and human life.
233

Changes in the mechanical behaviour of filter media due to biological growth.

Clements, Michele 27 May 2008 (has links)
Empirical observation of filter beds at South African water treatment plants showed that the filters were insufficiently cleaned by the backwash system and that media losses were unexpectedly high. Specific deposit tests developed by the RAU Water Research Group indicated that the dirtiness correlated with the organic content of the water being treated. This led to the hypothesis that biofilm is present on the media, somehow causing both the media loss and the difficulty to attain efficient backwashing. Biofilm consists of organisms surrounded by a sticky, gelatinous polysaccharide matrix. This matrix, also known as extra-cellular polymeric substances (EPS), is the bulk (50-90%) of the biofilm. Biofilm plays an important role in the establishment and maintenance of organisms in a hostile environment. From the above it doesn¡¦t make sense trying to measure biofilm from the numeration of the organisms. A more reliable direct but tedious measure is quantifying the EPS. A new alternative method developed by the RAU Water Research Group is to mechanically strip the specific deposit off the filter media and then determine the organic fraction by combusting the sample at 500¢XC. Two aspects of mechanical behaviour are deemed important in this study. First, headloss, because an under prediction in headloss will result in a higher than expected backwash frequency. Second, bed expansion, because an under prediction in bed expansion will lead to media washout. Literature indicates that both headloss and bed expansion increase with increasing biofilm growth. However, all those studies were conducted at waste water treatment plants with high organic and solids loading. With the exception of one reference which only discusses headloss, nothing on this topic is available in the literature for potable water treatment. Mathematical models were used to reduce the data from multiple headloss and bed expansion experiments. For the headloss data the Ergun equation was used and the sphericity (ƒÚ) was retained as the only unmeasured calibration constant. For the bed expansion data the Dharmarajah equation was used and the sphericity was retained as the only unmeasured calibration constant. Calibration of the mathematical models was done with least square fitting. The two values of sphericity as determined by Ergun and Dharmarajah are not necessarily the same for the same media sample. The sphericity was used as a calibration constant without any physical meaning, which accounts for different sets of complex unknowns. Samples for experimental work were drawn from full scale operating water treatment plants. The treatment plants were spread over four provincesof South Africa with different raw water sources, but using approximately the same media. The sampling was done on three occasions, Winter 2003, Summer 2003 and Winter 2004, to cover the extreme temperatures experienced in South Africa. Samples collected at the plants were tested for headloss and bed expansion, then transported back to the laboratory and placed in the oven for 24 hours at 110¢XC. The sample was then sieved and the density determined. The headloss and bed expansion tests were then repeated in the laboratory. Parallel to these tests, EPS and volatile fraction quantification tests were done. Direct methods of measuring biofilm, namely EPS and volatile fraction, yielded measurable results, thereby confirming the presence of biofilm. Plants that had large quantities of EPS also had a high volatile fraction, thereby confirming the expectation that the volatile fraction is an excellent method to rapidly quantify biofilm presence. EPS made up 41% of the volatile fraction, which is roughly comparable with the 50-90% quoted in literature. Where large quantities of EPS were found at a plant, a high TOC reduction also occurred through the filters. The indirect methods of measuring biofilm, namely headloss and bed expansion, also yielded measurable results. The filter media with biofilm as sampled from the treatment plants had a higher headloss and bed expansion than the same sample after drying and sieving, which resembles virgin filter media. The sphericity values for headloss decrease by as much as 26% which translates to a headloss gradient increase of 150mm/m at typical filtration rates. The sphericity values for bed expansion decrease by as much as 18% which translates to a bed expansion increase of 17% at normal backwash rates. The conditions at the treatment plants sampled suggest that biofilm growth is stimulated by eutrophic raw water and the presence of pre-ozonation and inhibited when the high pH lime process is used. The mechanism which causes the increased headloss and bed expansion with increased biofilm is hypothesised to be media grains sticking together causing clumping, and not grains which are individually and uniformly covered with a smooth, uniform layer of biofilm. Designers can compensate for this increase in headloss and bed expansion in two ways. They could either apply a correction factor after application of the models to allow for more headloss or bed expansion during eventual plant operation, or they could adjust parameters within the models to account for the larger headloss or bed expansion. As the surface area sphericity was used as a calibration factor in this study and could account for different sets of complex unknowns, it is suggested that this factor is used for adjustment of the model. Operational practice in South Africa often includes in-situ chlorine or acid treatment to alleviate the problem of dirty filter beds. In this study, however, where high and efficient backwash rates were used during tests, no significant improvements in media cleanliness could be attributed to the use of either chlorine or acid. It seems that a good backwash system doesn¡¦t need such remediation, but plants with a backwash system which underperforms might find such remediation useful. / Prof. J. Haarhoff
234

Fabrication and characterisation of highly water permeable ultrafiltration membranes as supports for forward osmosis thin film composite membranes

Vilakati, Gcina Doctor 23 April 2015 (has links)
Ph.D. (Chemistry) / The ultrafiltration membranes presented in this study were synthesized using the phase inversion method by casting on a nonwoven fabric. The polymer solutions were mixed with synthetic and bio additives in order to improve the resultant membrane performance. Synthetic additives (polyethylene glycol (PEG) and polyvinyl pyrrolidone (PVP)) were compared with a novel and cheap bio additive, lignin. Based on the knowledge that the additives must be soluble in water in order to increase the pore sizes of the membranes, sodium hydroxide was used to elute residual additives that remain in the membrane during coagulation. In order to trace the residual additives remaining, ATR-FTIR was used. Contact-angle analysis and water-absorption experiments were used to elucidate the hydrophilic properties of the prepared membranes. Membranes modified with lignin (Lig) were found to absorb more water (94% water uptake) when compared to the other membranes. In general, the contact angles were found to be low for membranes that were treated with NaOH. Membrane permeability followed the trend, Lig_PSf>PVP_PSf>PEG_PSf which is similar to the trend followed during water uptake. Pore size and pore distribution analysis showed that membranes modified with lignin and PVP had a narrow range (had pore sizes ranging from 10 to 24 nm) compared to that of PEG-PSf membrane (which ranged from 2.5 to 22 nm). A Robeson plot showed that Lig_PSf membranes had high separation factors regardless of the size of the solute being rejected. This study shows the possibility of using cheap and readily available additives to increase the performance of membranes......
235

Assessment of a novel filter system for recirculating aquaculture

Montorio, Luca January 2004 (has links)
The aim of this project was to investigate the usage of manganese dioxide ore as a bio-filter media to remove metabolites in aquaculture closed system, and to determine whether manganese toxicity would at the same time represent a risk to fish. Initial work investigated the physical properties of manganese dioxide and its chemical interaction with ammonia and nitrite in the absence of biological activity. Subsequently, two pilot-scale pressurised filters were installed in a commercial scale hatchery in order to compare the metabolite removal performance of manganese dioxide against silicate sand in the presence of biological activity commonly found in aquaculture conditions. The investigation suggests that Mn medium is more reliable in converting ammonia to nitrate without producing a residual output of nitrite. The superior performance ofMn media compared with sand appears to be mainly related to the physical structure of the manganese ore. Furthermore, the Mn medium did not appear to be soluble in the ambient conditions normally found in aquaculture-closed system. From the design point of view, due to the higher ammonia and nitrite removal rates, a shorter retention time and a lower volume of media are required in the case of manganese dioxide technology compared with sand media. As a result, it is much easier to size a biofilter with Mn media. Manganese systems have a comparable total costs to conventional sand media, but using the Mn technology provides a more reliable control of toxic nitrite, thereby reducing risks offish loss and hence with reduced expected production costs.
236

Applications de l’homologie persistante pour la reconnaissance des formes

Hamdi, Chaima January 2017 (has links)
L’homologie persistante est un outil fondamental dans la topologie computationnelle. Cette méthode est utilisée pour reconnaître et comparer les formes. Dans ce travail nous étudions d’abord l’homologie persistante dans le cas unidimensionnel d’ordre 0 qu’on appelle aussi fonction de taille. Nous présentons une démonstration du fait que toute fonction de taille peut être représentée comme un ensemble de points et de lignes dans le plan réel, avec des multiplicités. Cela permet une approche algébrique aux fonctions de taille et la construction de nouvelles pseudo distances entre les fonctions de taille pour comparer les formes. Nous calculons ensuite l’homologie persistante unidimensionnelle d’ordre n avec différentes méthodes de filtration de l’espace correspondant à l’histoire d’un complexe croissant. Nous classons un changement topologique qui se produit pendant la croissance soit comme une caractéristique ou un bruit, en fonction de sa durée de vie ou de sa persistance dans la filtration. Une présentation avec des codes barres affiche alors la persistance de ces invariants. L’homologie persistante multidimensionnelle nous permet de soutirer plus d’informations sur les formes en utilisant la fonction de filtration avec des valeurs dans [nombre réel]k. Pour fournir un descripteur de forme concis et complet dans le cas multidimensionnel nous réduisons le calcul de l’homologie persistante multidimensionnelle au calcul de l’homologie persistante ordinaire pour une famille paramétrée de fonctions à valeur dans [nombre réel].
237

Investigation of effect of dynamic operational conditions on membrane fouling in a membrane enhanced biological phosphorus removal process

Abdullah, Syed Zaki 05 1900 (has links)
The membrane bioreactor (MBR) is becoming increasingly popular for wastewater treatment, mainly due to its capability of producing high quality effluent with a relatively small footprint. However, high plant maintenance and operating costs due to membrane fouling limit the wide spread application of MBRs. Membrane fouling generally depends on the interactions between the membrane and, the activated sludge mixed liquor, which in turn, are affected by the chosen operating conditions. The present research study aimed to explore the process performance and membrane fouling in the membrane enhanced biological phosphorus removal (MEBPR) process under different operating conditions by, (1) comparing two MEBPRs operated in parallel, one with constant inflow and another with a variable inflow, and by, (2) operating the MEBPRs with different solids retention times (SRT). On-line filtration experiments were conducted simultaneously in both MEBPR systems by using test membrane modules. From the transmembrane pressure (TMP) data of the test membrane modules, it was revealed that fouling propensities of the MEBPR mixed liquors were similar in both parallel reactors under the operating conditions applied, although the fouling propensity of the aerobic mixed liquors of both reactors increased when the SRT of the reactors was reduced. Routinely monitored reactor performance data suggest that an MEBPR process with a varying inflow (dynamic operating condition) performs similarly to an MEBPR process with steady operating conditions at SRTs of 10 days and 20 days. Mixed liquor characterization tests were conducted, including critical flux, capillary suction time (CST), time to filter (TTF) and, bound and soluble extracellular polymeric substances (EPS) were quantified, to evaluate their role on membrane fouling. The tests results suggest that the inflow variation in an MEBPR process did not make a significant difference in any of the measured parameters. With decreased SRT, an increase in the concentrations of EPS was observed, especially the bound protein, and the bound and soluble humic-like substances. This suggests that these components of activated sludge mixed liquors may be related to membrane fouling. No clear relationship was observed between membrane fouling and other measured parameters, including critical flux, normalized CST and normalized TTF. / Applied Science, Faculty of / Civil Engineering, Department of / Graduate
238

A lysimeter study of domestic waste water renovation by forest soil filtration

Khor, Chin Choon January 1973 (has links)
Laboratory lysimeters were used to investigate the behaviour, over time, of a humid west coast forest soil under intermittent primary municipal waste water irrigation. Mineral soil packed to a depth of 69 cm and to a uniform density of about 0.9 gm per cm³ was covered with a forest floor 9 cm thick. Sintered glass bead tensiometers were used to gauge the water potential distributions in the soil lysimeters. Irrigation and drainage systems were designed to maintain constant rates of waste water application and facilitate measurement of drainage rates. Two groups of soil lysimeters each with triplicate samples, were loaded with waste water at the rates of 0.23 cm per day ( 37 cm³ per day ) and 0.47 cm per day ( 75 cm³ per day ) for a period of 9 months. The soil lysimeters were incubated at a temperature of about 15.5 degrees Centigrade. The total amounts of nitrogen added to both groups of soil lysimeters were 223.7 gm and 436.9 gm or equivalent to 1.4 % and 2.7 % of the total nitrogen of the original soil, respectively. Renovations of wastewater in terms of nitrogen were 75 % and 43 % with respect to the two groups of soil lysimeters. Renovations in terms of phosphorus were more than 99 % in both groups of soil lysimeters. Retention of nutrients by the soil was increased with time under favourable aerobic conditions. Uptake of nutrients by vegetation in the field would minimize leaching losses. Results from this experiment indicated no significant changes in the physical and chemical behaviour of the soils. Proper design of the waste water irrigation system in terms of loading would maximize the efficiency of renovation without deteriorating the behaviour of the soils. / Land and Food Systems, Faculty of / Graduate
239

Hollow Fiber Ultrafiltration of Ottawa River Water: Impact of Different Pre-treatment Schemes

Walker, Steven January 2014 (has links)
To minimize membrane fouling many water treatment plants pre-treat water prior to microfiltration (MF) or ultrafiltration (UF). Coagulation/flocculation/sedimentation is a common form of pre-treatment, but little research has been conducted on floatation as a part of the pre-treatment. The objective of this thesis is to compare pre-treatment with floatation and with sedimentation for Ottawa River water, a typical Northern Canadian water with a high natural organic matter (NOM) content and a large hydrophobic (HPO) NOM fraction. Fouling tests consisted of multiple filtration/backwashing cycles performed by an automated bench-scale UF hollow fiber membrane system. Test were conducted with Ottawa River water (ORW) and ORW subjected to three different types of pre-treatment conducted at closely-located full-scale water treatment plants, including one using floatation. Both Alum pre-treatments resulted in decreases in NOM (63% and 68% TOC) and HPO NOM (56% and 68%TOC) which helped to reduce fouling. However, the remaining NOM and HPO NOM still caused significant hydraulically and chemical irreversible fouling. The water pre-treated with floatation produced the least severe hydraulically irreversible fouling for all experiments while Raw ORW produced the highest. During the early stages of membrane filtration (~10 hours), the TMP sharply increases which may imply that adsorption is dominant. Statistical analysis during the initial stages of filtration showed that the HPO fraction of NOM was linked to hydraulically irreversible fouling, which may be attributed to adsorption. Raw ORW also had the highest hydraulically reversible fouling while all pre-treatments were able to reduce this type of fouling. Statistical analysis suggested that the transphilic (TPI) fraction of NOM and particulate organic carbon (POC) were responsible for hydraulically reversible fouling during subcritical flux experiments, which may be attributed to cake formation on the membrane surface. It was found that for all waters and experiments, hydraulically irreversible fouling was greater than hydraulically reversible fouling. This may be because of the high HPO concentrations in the ORW. Hydraulically reversible fouling and backwash efficiencies were found to fluctuate with time. It is hypothesised that the cake formation adheres to the membrane surface and is not fully removed until enough backwash pressure has developed. Further investigation into alternative cleaning procedures is required as the NaOH cleaning was not very effective for some of the pre-treated waters.
240

Design and development of an improved low-cost ceramic water filter based on the existing Potpaz home water treatment device for use within rural households of the Vhembe region

Bolton, Martin 08 March 2012 (has links)
M.Tech. / This project aimed to develop the Potpaz ceramic water filter into an improved filter design optimally suited to South African rural conditions, to provide potable water rather than contaminated water to households. Communities that do not have access to in-house treated water often end up with a contaminated water supply, as the water to be consumed is usually sourced from communal water collection points and stored in containers. There is evidence that the water consumed at point-of-use in rural areas is not always of a potable quality due to possible contamination between collection and consumption. The existing Potpaz home water treatment device has been scientifically proven to return contaminated water to a potable state. A limited number have been imported to South Africa for use in a project that studied the effect of household point-of-use treatment on the health of the consumer. It was not at all certain whether the households would use these devices effectively because this filter was not part of their everyday water system. Part of investigating whether or not they would effectively use this filter was the inclusion of industrial design within the filter assessment section of a larger research project conducted in the Vhembe region to understand the requirements of the user. Industrial design concerns itself with the requirements of the user, as well as knowledge regarding product design, development and manufacturing. Households that took part in the point-of-use project used the Potpaz home water treatment device for more than two months and were approached to provide feedback regarding its use. From the feedback, it became evident that there were aspects of the Potpaz design that needed modification towards an improved water filter more suited for its intended use in rural households. An Action Researchinfluenced methodology and User Centred Design approach informed the collection of original data and feedback on areas of improvement. This, together with visits to local shops and community potters, provided sufficient background to understand the needs and preferences of the intended rural users regarding the use of the device. This informed the design process and increased the chances of developing a readily accepted, more suitable product to the intended users and the domestic environment in which they live. To achieve this, this project focused on the following aspects regarding Potpaz filters: placement, use and design aspects of usability and ergonomics. Development of the improved filter design culminated in rapid prototyping of a scale model and the fabrication of a full-size working model allowing for physical interface to evaluate the success of the design solution.

Page generated in 0.0435 seconds