411 |
Nonlinear liquid sloshing in a 3D tank with bafflesWu, Chih-Hua 09 July 2010 (has links)
Liquid sloshing with unrestrained free surface in a moving container is associated with various engineering problems, such as tankers on highways, liquid oscillations in large storage tanks caused by earthquakes, sloshing of liquid cargo in ocean-going vessels, and the motion of liquid fuel in aircraft and spacecraft. The purpose of this study is to develop a three-dimensional (3D) numerical wave tank with or without internal structures to investigate the mechanism of liquid sloshing and the interaction between the fluid and internal structures. The developed 3D time-independent finite difference method is applied on solving liquid sloshing in tanks with or without the influence of baffles under the ground motion of six-degrees of freedom. The 3D Navier-Stokes equations were solved and transformed to a tank-fixed coordinate system, and the fully nonlinear kinematic and dynamic free surface boundary conditions for fluid sloshing in a rectangular tank with a square base were considered. The fluid is assumed incompressible in this study. The complicated interaction in the vicinity of the fluid-structure interface was solved by implementing one dimensional ghost cell approach and the stretching grid technique near the fluid-structure boundaries were used to catch the detailed evolution of local flow field. A PC-cluster was established by linking several single computers to reduce the computational times due to the implementation of the 3D numerical model. The Message Passing Interface (MPI) parallel language and MPICH2 software were utilized to code the computer codes and to carry out the circumstance of parallel computation, respectively.
The developed numerical scheme was verified by rigorous benchmark tests. Not only the reported analytical, numerical and experimental studies were compared with the present numerical results, the experimental investigation was also involved in the present work to further validate the accuracy of the numerical scheme. All the benchmark tests of this study showed excellent accuracy of the developed numerical scheme. For a tank without internal structures, the coupled motions of surge and sway are simulated with various excitation angles, excitation frequencies and water depths. The characteristics of sloshing waves are dissected in terms of the classification of sloshing wave types, sloshing amplitude, beating phenomenon, sloshing-induced forces and energy transfer of sloshing waves. Six types of sloshing waves, named single-directional, diagonal, square-like, swirling-like, swirling and irregular waves, were found and classified in the present study and the occurrence of these waves are tightly in connection with the excitation frequency of the tank. The effect of excitation angle on the characteristics of sloshing waves is explored and discussed, especially for swirling waves. The spectral analyses of sloshing displacement of various sloshing waves are examined and a clear evidence of the correlation between sloshing wave patterns and resonant modes of sloshing waves are demonstrated. The mechanism of switching direction of swirling waves is discussed by investigating the situation of circulatory flow, the instantaneous free surface, the gravitational effect and the instantaneous direction of external forcing. The coupling effects of heave, surge and sway motions were also included in this study and the result showed an unstable influence of heave motion on the kinematic and dynamic characteristics of sloshing waves when the vertical excitation frequency of the tank is twice as large as the fundamental natural frequency. Except irregular waves, the other types of sloshing waves are converted into swirling waves due to the effect of heave motion.
The study related to tuned liquid damper (TLD) in 2D and 3D tanks were considered. A comprehensive investigation for a 2D tank with vertically tank bottom-mounted baffles (baffled tank) are demonstrated and discussed with respect to the influence of baffle height on the natural mode of the tank, the evolution of vortices and vortex shedding phenomenon, the relationship between the vortex shedding frequency and the excitation frequency of the tank, the vortex size generated in the vicinity of the baffle tip, the interaction of vortices inside the tank. The baffle height shows a significant influence on the shift of the first natural frequency of the baffled tank and the liquid depth also plays an important part in determining this influence. In other words, the shift of the first natural mode due to various baffle height is varied with water depths. The design of two baffles separated by 0.2 times the tank breadth is an efficient tool to not only reduce the sloshing amplitude but switch the first natural frequency of the tank. The sloshing displacement is affected distinctly by different numbers of baffles mounted vertically on the tank bottom. The more baffles mounted onto the tank bottom, the smaller the sloshing displacement is presented in both the transient and steady-state periods. The processes of the evolution of vortices near the baffle tip are categorized into four phases: the formation of separated shear layer and generation of vortices, the formation of a vertical jet and shedding of vortices, the interaction between shedding vortices and sloshing flow (the generation of snaky flow) and the interaction between snaky flow and sloshing waves. Vortex shedding phenomenon due to stronger vertical jets occurs when the excitation frequency is close to the first natural mode of the baffled tank. The size of the vortex generated near the baffle tip is discussed and the vortex size is closely correlated with the baffle height.
Two types of 3D tuned liquid dampers, a vertically tank bottom-mounted baffle and a vertical plate, are discussed for a tank under coupled surge-sway motions. The wave types of diagonal and single-directional waves switch to the swirling type due to the influence of the baffle. The phenomenon of square-like waves or irregular waves coexisting with swirling waves is found in the baffled tank under diagonal excitation. The baffle and the vertical plate mounted parallel to the east (west) wall of the tank can effectively reduce the sloshing amplitude when the excitation angle is between 0 degree and 10 degree and the corresponding sloshing displacement in the sway (z) direction becomes more dominant with the increase of the excitation angle. The shift of the first natural mode of the baffled tank due to various baffle heights in the x direction is dominated in this design of baffled tank. The length of the plate can cause a significant influence on not only the variation of the natural frequencies but the type of the sloshing waves. The influence of the vertical plate on the irregular waves is insignificant and several peaks appear in the spectral analysis of the sloshing displacement for the irregular waves and the numbers of peaks are more than that of the baffled tank.
|
412 |
Numerical Investigation of Fractured Reservoir Response to Injection/Extraction Using a Fully Coupled Displacement Discontinuity MethodLee, Byungtark 2011 August 1900 (has links)
In geothermal reservoirs and unconventional gas reservoirs with very low matrix permeability, fractures are the main routes of fluid flow and heat transport, so the fracture permeability change is important. In fact, reservoir development under this circumstance relies on generation and stimulation of a fracture network. This thesis presents numerical simulation of the response of a fractured rock to injection and extraction considering the role of poro-thermoelasticity and joint deformation. Fluid flow and heat transport in the fracture are treated using a finite difference method while the fracture and rock matrix deformation are determined using the displacement discontinuity method (DDM).
The fractures response to fluid injection and extraction is affected both by the induced stresses as well as by the initial far-field stress. The latter is accounted for using the non-equilibrium condition, i.e., relaxing the assumption that the rock joints are in equilibrium with the in-situ stress state.
The fully coupled DDM simulation has been used to carry out several case studies to model the fracture response under different injection/extractions, in-situ stresses, joint geometries and properties, for both equilibrium and non-equilibrium conditions. The following observations are made: i) Fluid injection increases the pressure causing the joint to open. For non-isothermal injection, cooling increases the fracture aperture drastically by inducing tensile stresses. Higher fracture aperture means higher conductivity. ii) In a single fracture under constant anisotropic in-situ stress (non-equilibrium condition), permanent shear slip is encountered on all fracture segments when the shear strength is overcome by shear stress in response to fluid injection. With cooling operation, the fracture segments in the vicinity of the injection point are opened due to cooling-induced tensile stress and injection pressure, and all the fracture segments experience slip. iii) Fluid pressure in fractures increases in response to compression. The fluid compressibility and joint stiffness play a role. iv) When there are injection and extraction in fractured reservoirs, the cooler fluid flows through the fracture channels from the injection point to extraction well extracting heat from the warmer reservoir matrix. As the matrix cools, the resulting thermal stress increases the fracture apertures and thus increases the fracture conductivity. v) Injection decreases the amount of effective stress due to pressure increase in fracture and matrix near a well. In contrast, extraction increases the amount of effective stress due to pressure drop in fracture and matrix.
|
413 |
Simulation of elastic waves propagation and reduced vibration by trench considered soil liquefaction mechanicSun, Hong-hwa 09 February 2004 (has links)
This thesis analyses the governing equation of elastic wave propagation by the finite difference method , and considered absorbing boundary condition and the material damping to simulate behavior of wave propagation. Otherwise, we combined with the mechanics of the soil pore water pressure raised by shear stress effected repeatedly and the soil property is changed by water pressure effected to simulate physical phenomenon in half-space, and probe into the soil liquefaction process during different force types.
Using the developed numerical wave propagation model probe into reducing vibration by dug trench and filler trench, and analyzed data by 1/3 octave band method. This thesis discuss with reducing vibration effect by different trench disposed¡Bdifferent filler material property, complex filler, and extending the force source pile length.
|
414 |
Modeling Of Newtonian Fluids And Cuttings Transport Analysis In High Inclination Wellbores With Pipe RotationSorgun, Mehmet 01 May 2007 (has links) (PDF)
This study aims to investigate hydraulics and the flow characteristics of drilling fluids inside annulus and to understand the mechanism of cuttings transport in horizontal and deviated wellbores. For this purpose, initially, extensive experimental studies have been conducted at Middle East Technical University, Petroleum & / Natural Gas Engineering Flow Loop using water and numerous drilling fluids for hole inclinations from horizontal to 60 degrees, flow velocities from 0.64 m/s to 3.05 m/s, rate of penetrations from 0.00127 to 0.0038 m/s, and pipe rotations from 0 to 120 rpm. Pressure loss within the test section and stationary and/or moving bed thickness are recorded. New friction factor charts and correlations as a function of Reynolds number and cuttings bed thickness with the presence of pipe rotation for water and drilling fluids in horizontal and deviated wellbores are developed by using experimental data. Meanwhile empirical correlations that can be used easily at the field are proposed for predicting stationary bed thickness and frictional pressure loss using dimensional analysis and the effect of the drilling parameters on hole cleaning is discussed. It has been observed that, the major variable influencing cuttings transport is fluid velocity. Moreover, pipe rotation drastically decreases the critical fluid velocity that is required to prevent the stationary cuttings bed development, especially if the pipe is making an orbital motion. A decrease in the pressure loss is observed due to the bed erosion while rotating the pipe. Cuttings transport in horizontal annulus is modeled using a CFD software for different fluid velocities, pipe rotation speeds and rate of penetrations. The CFD model is verified by using cuttings transport experiments.
A mathematical model is also proposed to predict the flow characteristics of Newtonian fluids in concentric horizontal annulus with drillpipe rotation. The Navier-Stokes equations of turbulent flow are numerically solved using finite differences technique. A computer code is developed in Matlab 2007b for the proposed model. The performance of the proposed model is compared with the experimental data which were available in the literature and gathered at METU-PETE Flow Loop as well as Computational Fluids Dynamics (CFD) software. The results showed that the mechanistic model accurately predicts the frictional pressure loss and the velocity profile inside the annuli. The model&rsquo / s frictional pressure loss estimations are within an error range of ± / 10%.
|
415 |
Development Of Multi-layered Circuit Analog Radar Absorbing StructuresYildirim, Egemen 01 July 2012 (has links) (PDF)
A fast and efficient method for the design of multi-layered circuit analog absorbing structures is developed. The method is based on optimization of specular reflection coefficient of a multi-layered absorbing structure comprising of lossy FSS layers by using Genetic Algorithm and circuit equivalent models of FSS layers. With the introduced method, two illustrative absorbing structures are designed with -15 dB reflectivity for normal incidence case in the frequency bands of 10-31 GHz and 5-46 GHz, respectively. To the author&rsquo / s knowledge, designed absorbers are superior in terms of frequency bandwidth to similar studies conducted so far in the literature. For broadband scattering characterization of periodic structures, numerical codes are developed. The introduced method is improved with the employment of developed FDTD codes to the proposed method. By taking the limitations regarding production facilities into consideration, a five-layered circuit analog absorber is designed and manufactured. It is shown that the manufactured structure is capable of 15 dB reflectivity minimization in a frequency band of 3.2-12 GHz for normal incidence case with an overall thickness of 14.2 mm.
|
416 |
三次元一般曲線座標系に対するCIP法粘性流解法高下, 和浩, KOHGE, Kazuhiro, 峯村, 吉泰, MINEMURA, Kiyoshi, 内山, 知実, UCHIYAMA, Tomomi 03 1900 (has links)
No description available.
|
417 |
Automatic history matching in Bayesian framework for field-scale applicationsMohamed Ibrahim Daoud, Ahmed 12 April 2006 (has links)
Conditioning geologic models to production data and assessment of uncertainty is generally done in a Bayesian framework. The current Bayesian approach suffers from three major limitations that make it impractical for field-scale applications. These are: first, the CPU time scaling behavior of the Bayesian inverse problem using the modified Gauss-Newton algorithm with full covariance as regularization behaves quadratically with increasing model size; second, the sensitivity calculation using finite difference as the forward model depends upon the number of model parameters or the number of data points; and third, the high CPU time and memory required for covariance matrix calculation. Different attempts were used to alleviate the third limitation by using analytically-derived stencil, but these are limited to the exponential models only.
We propose a fast and robust adaptation of the Bayesian formulation for inverse modeling that overcomes many of the current limitations. First, we use a commercial finite difference simulator, ECLIPSE, as a forward model, which is general and can account for complex physical behavior that dominates most field applications. Second, the production data misfit is represented by a single generalized travel time misfit per well, thus effectively reducing the number of data points into one per well and ensuring the matching of the entire production history. Third, we use both the adjoint method and streamline-based sensitivity method for sensitivity calculations. The adjoint method depends on the number of wells integrated, and generally is of an order of magnitude less than the number of data points or the model parameters. The streamline method is more efficient and faster as it requires only one simulation run per iteration regardless of the number of model parameters or the data points. Fourth, for solving the inverse problem, we utilize an iterative sparse matrix solver, LSQR, along with an approximation of the square root of the inverse of the covariance calculated using a numerically-derived stencil, which is broadly applicable to a wide class of covariance models.
Our proposed approach is computationally efficient and, more importantly, the CPU time scales linearly with respect to model size. This makes automatic history matching and uncertainty assessment using a Bayesian framework more feasible for large-scale applications. We demonstrate the power and utility of our approach using synthetic cases and a field example. The field example is from Goldsmith San Andres Unit in West Texas, where we matched 20 years of production history and generated multiple realizations using the Randomized Maximum Likelihood method for uncertainty assessment. Both the adjoint method and the streamline-based sensitivity method are used to illustrate the broad applicability of our approach.
|
418 |
Geological Modeling of Dahomey and Liberian BasinsGbadamosi, Hakeem B. 16 January 2010 (has links)
The objective of this thesis is to study two Basins of the Gulf of Guinea (GoG),
namely the Dahomey and the Liberian Basins. These Basins are located in the northern
part of the GoG, where oil and gas exploration has significantly increased in the last 10
years or so. We proposed geological descriptions of these two Basins. The key
characteristics of the two models are the presence of channels and pinch-outs for depths
of between 1 km and 2 km (these values are rescaled for our numerical purposes to 600-
m and 700-m depths) and normal faults below 3 km (for our numerical purposes we use
1 km instead of 3 km). We showed that these models are consistent with the plate
tectonics of the region, and the types of rocks and ages of rocks in these areas.
Furthermore, we numerically generated seismic data for these two models and
depth-migrated them. We then interpreted the migrated images under the assumption
that the geologies are unknown. The conclusions of our interpretations are that we can
see clearly the fault systems in both models. However, our results suggest that seismic
interpretations of the channels and pinch-outs associated with the geology of the Dahomey and Liberian Basins will generally be difficult to identify. In these particular
cases, we missed a number of channels and pinch-outs in our interpretations. The limited
resolution of seismic images is the key reason for this misinterpretation.
|
419 |
Simulation and experiment on laser-heated pedestal growth of yttrium-aluminum-garnet single-crystal fibersChen, Peng-Yi 20 August 2009 (has links)
Recently the computational speed and the functions of the numerical methods are advancing rapidly. It is the future trend that using the computational fluid dynamics (CFD) to perform simulation for making up the experimental deficiency, reducing the risk, improving the quality of the product, and saving the cost of research and development.
A two-dimensional simulation was employed to study the melt/air and melt/solid interface shapes of the miniature molten zone formed in the laser-heated pedestal growth (LHPG) system. Using non-orthogonal body-fitting grid system with control-volume finite difference method, the interface shape can be determined both efficiently and accurately. During stable growth, the dependence of the molten-zone length and shape on the heating CO2 laser is examined in detail under both the maximum and the minimum allowed powers with various growth speeds. The effect of gravity for the miniature molten zone is also simulated, which reveals the possibility for a horizontally oriented LHPG system. Such a horizontal system is good for the growth of long crystal fibers.
After comparing with the shape of the molten zone in terms of the experiment and the analysis of the simulation shown as above. Heat transfer and fluid flow in the LHPG system are analyzed near the deformed interfaces. The global thermal distributions of the crystal fiber, the melt, and the source rod are described by temperature and its axial gradient within length of ~10 mm. As compared with the growth of bulk crystal of several centimeters in dimension, natural convection drops six orders in magnitude due to smaller melt volume; therefore, conduction rather than convection determines the temperature distribution in the molten zone. Moreover, thermocapillary convection rather than mass-transfer convection becomes dominant. The symmetry and mass flow rate of double eddy pattern are significantly influenced by the molten-zone shape due to the diameter reduction and the large surface-tension-temperature coefficient in the order of 10-4~10-3. According to the analysis shown as above, the results could be further extended for the analysis of the concentration profile and study of horizontal growth.
|
420 |
EM simulation using the Laguerre-FDTD scheme for multiscale 3-D interconnectionsHa, Myunghyun 07 November 2011 (has links)
As the current electronic trend is toward integrating multiple functions in a single electronic device, there is a clear need for increasing integration density which is becoming more emphasized than in the past. To meet the industrial need and realize the new system-integration law [1], three-dimensional (3-D) integration is becoming necessary. 3-D integration of multiple functional IC chip/package modules requires co-simulation of the chip and the package to evaluate the performance of the system accurately. Due to large scale differences in the physical dimensions of chip-package structures, the chip-package co-simulation in time-domain using the conventional FDTD scheme is challenging because of Courant-Friedrich-Levy (CFL) condition that limits the time step. Laguerre-FDTD has been proposed to overcome the limitations on the time step. To enhance performance and applicability, SLeEC methodology [2] has been proposed based on the Laguerre-FDTD method. However, the SLeEC method still has limitations to solve practical 3-D integration problems.
This dissertation proposes further improvements of the Laguerre-FDTD and SLeEC method to address practical problems in 3-D interconnects and 3-D integration. A method that increases the accuracy in the conversion of the solutions from Laguerre-domain to time-domain is demonstrated. A methodology that enables the Laguerre-FDTD simulation for any length of time, which was challenging in prior work, is proposed. Therefore, the analysis of the low-frequency response can be performed from the time-domain simulation for a long time period. An efficient method to analyze frequency-domain response using time-domain simulations is introduced. Finally, to model practical structures, it is crucial to model dispersive materials. A Laguerre-FDTD formulation for frequency-dependent dispersive materials is derived in this dissertation and has been implemented.
|
Page generated in 0.0474 seconds