• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 33
  • 27
  • 24
  • 4
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 97
  • 97
  • 56
  • 25
  • 24
  • 18
  • 17
  • 15
  • 12
  • 11
  • 11
  • 10
  • 10
  • 9
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Effect of Fabrication on Birefringence of Cr4+:YAG Double-clad Crystal Fiber

Huang, Shin-wen 04 August 2010 (has links)
Modal birefringence and stress distribution measurement in doubt-clad rare-earth-doped fibers are reported. For example, doubt ¡Vclad ytterbium-doped fiber and doubt ¡Vclad neodymium -doped fiber. In this paper, I am interested in the effect of fabrication on birefringence of Cr4+: YAG double-clad crystal fiber. A knowledge of stress distribution in the fiber would indicate the origin of birefringence.Since fiber birefringence can be produced by different mechanisms.For example,stress-induced birefringence,geometrical anisotropy of a non-circular fiber core and inner-cladding, intrinsic birefringence, fiber bending and twist.To understand the origin of birefringence, I have obtained the stress distribution pattern in Polarization Optical Microscopy.Using scanning wavelength method (Phase Retardation), I set-up the system successfully and measured the group modal birefringence of bulk:YVO4 crystal and Cr4+ :YAG double-clad crystal fiber. I also used Jones matrix, Mueller matrix,stress optics law, photoelastic and mathematical formulas on the estimated modal birefringence to calculate the stress intensity distribution and interference light conditions and estimate the modal birefringence ,and then compared with other rare earth-doped fiber.
2

The Study and Fabrication of PPLN Crystal Fiber

Tsai, Mon-Chang 13 July 2006 (has links)
Due to its easy growth, higher nonlinear coefficients, and better optical characteristics, LiNbO3 is broadly used as nonlinear crystal in laser system and wavelength converter in optical communication systems. In this thesis, we discuss the use of LHPG method to grow periodically poled LiNbO3 crystal fiber without metallic patterns. During the growth, micro-swing is managed to assist poling process, simultaneously we can understand and simulate the electric-field induced current. Using the relation between current waveform and micro-swing amplitude, we can quantify the micro-swing amplitude, and establish feedback control to enhance the stability during crystal fiber growth process. The achieved internal SHG conversion efficiency is 14.8 % with a quasi-phase matched period of 15.45 £gm. Besides promoting process stability and improving uniformity of domain inversion period, it is our hope that the relation between domain inversion and measured induced current can be clarified in the future. Due to the low Curie temperature of LiTaO3, it is expected that our experience on LiNbO3 can facilitate the development of periodic poling on LiTaO3.
3

The Study and Fabrication of High Doping Gradient Nd:YAG Crystal Fiber Laser

Lu, Yu-Jen 08 July 2003 (has links)
The rapid developments in optical and electronic technologies have accelerated developments of solid state laser technology. The diode-pumped solid state laser has the merits of the diode laser, such as compactness, low cost, and the merits of the solid state laser, such as high laser quality, high conversion efficiency, long lifetime, and simple structure. There use in laser applications is very cost-effective in terms of material consumption, which is typically one-thousandth that of bulk material. In addition, heat dissipation in the gain medium can be significantly alleviated because highly heat-conductive material can be applied to the circumference of the crystal fiber. So, it was applicated in electronics, communication and medicine widely. The laser-heated pedestal growth (LHPG) method is now a well-established technique for the growth of single-crystal fibers. It is crucible free and can therefore produce high-purity, low-defect-density single crystals. Interface loss is one of the dominant factors that reduce the efficiency of crystal fiber lasers, although cladding with a dielectric coating or in-diffusion of the gain core has been utilized to suppress this interface loss. Using a gradient-index Nd:YAG crystal fiber with peak Nd concentration up to 1.6-atm.%, we recently demonstrated a laser power of 145 mW and slope efficiency 28.9%. Peak Nd concentration up to 3.6-atm.% Nd:YAG crystal fiber with a 20-um core was grown, which could eliminate the interface loss and enhance the efficiency of crystal fiber lasers to be compatible with bulk solid-state lasers.
4

Numerical simulation of temperature and thermal stress in Cr4+:YAG fiber

Lin, Chih-Sheng 08 September 2005 (has links)
In this thesis, thermal effects on Cr4+:YAG fiber are studied through numerical modeling. Crystal fiber was used as the gain medium in amplified spontaneous emission(ASE) light source, lasers, or amplifiers. Because the absorbed pump power can not be completely turned to signal in energy transition, some of the absorbed pumping power will be converted into heat, which raises the fiber temperature. In continuous-wave regime, maximum temperature, the steady-state temperature profile, and thermal stresses in the host material under single end pump are obtained by using the commercial finite elements method software ANSYS. The pump power was propagated with exponential decay inside the fiber. Because more heat was generated at the light incident region, a maximum temperature of 397K was observed from the simulation result at the same region under single-end pump of 3W. Simultaneously, a maximum tensile stress of 39 MPa was reached at the border between YAG and Silica. Finally, temperature profiles and thermal stresses were calculated in the other conditions.
5

UV-Induced Long Period Fiber Gratings in Gel-Filled Photonic Crystal Fibers

Chen, Chi-Ping 28 July 2010 (has links)
A long period fiber grating (LPFG) is formed by inducing the periodic refractive index variation along a fiber. A lot of work has been done to fabricate the LPFGs in the photonic crystal fibers (PCFs) to function as all-fiber band-rejection filters, interferometers, and sensing applications. In this thesis, we propose a novel LPFG based on the gel-filled PCF. The PCF filled with the UV gel was exposed to the high-intensity UV light through the mask. The periodic index variation is formed along the fiber in the cladding region, resulting in the LPFG. By measuring the propagation losses of our LPFG, three spectral dips in the transmission bands are observed at 872 nm, 1309 nm, and 1418 nm as the grating period is 600 £gm, which indicates the mode coupling from the fundamental core mode to the higher order modes (HOMs) of the gel-filled PCFs. By using a full-vector finite-difference frequency-domain (FDFD) method, we numerically calculate the phase match condition for our LPFGs. The calculated resonant wavelengths are 875 nm, 1319 nm, and 1415 nm. Very good agreement between the measured resonant wavelengths and the numerical results is obtained. We also fabricate the selectively gel-filled LPFGs to reduce the propagation losses by utilizing a simple selectively blocking technique. In addition, we measure and discuss the sensing sensitivities of the UV-induced LPFGs, including the temperature, strain, curvature, torsion, and surrounding refractive index (SRI) sensitivities. The measured sensitivity to temperature is 1.7 nm/¢XC from 25 ¢XC to 45 ¢XC. As the surrounding refractive index is increased to 1.377, the dip position has a maximum shift of 2 nm. Compared with other LPFGs, the UV-induced LPFGs are more insensitive to bending and strain due to the complete cladding structure. This could benefit the stability of the temperature sensors, based on our UV-induced LPFGs.
6

Birefringence properties of PCF coil and its sensing applications

Fan, Chen-Feng 20 July 2011 (has links)
Fiber coils had been widely investigated as optical current sensors for a long time. In this thesis we have fabricated the LMA-10 PCF coils. By using the Sagnac fiber loop, we can obtain the transmission spectrum of the PCF coils. The measured birefringence of the SMF coil and the PCF coil are 1.49¡Ñ10^-5 at £f= 959.27 nm and 1.31¡Ñ10^-5 at £f = 1264.3 nm, respectively. The birefringence of the SMF coil agrees well with the theoretical result. The properties of PCF coils for variant fiber turns and cylinder sizes are discussed. As we increase the number of fiber turns, the fringe spacing becomes smaller due to the increasing phase difference. The birefringence of the PCF coil decreases with the increasing cylinder radius. Besides, we also measure the temperature sensitivities of the SMF coil and PCF coil to be 130 pm/oC and 64.55 pm/ oC, respectively. We have also demonstrated the sensing properties of the PCF coils. By introducing a displacement along the cylinder, the bending on the PCF coil can be induced. The measured bending sensitivity is -3.732 nm/m^-1. In addition, the water depth sensing properties are obtained by horizontally and vertically immersing the PCF coils into the water. As we put the PCF coil horizontally into the water, the shift of the measured spectra shows a exponential relation to the water depth. As for the vertically immersed PCF coil, the linear water depth sensitivity is -11.658 nm/cm. Finally, we propose the transverse displacement sensor based on the PCF coil. The measured sensitivity to transverse displacement can be as large as 903.9 nm/cm.
7

The Study and Fabrication of Cr4+:YAG Crystal Fiber Laser and its Microstructure Analysis

Lai, Chien-Chih 09 July 2004 (has links)
ABSTRACT For the generation of broadband tunability over 1300 nm to 1600 nm range in optical communications, Cr4+ ions have been demonstrated in a number of hosts including Cr4+:forsterite, Cr4+:Y2SiO5, and Cr4+:YAG. Since YAG is a cubic crystal with Ia-3d space group, its excellent thermal and optical properties has drawn extensive studies. In recent years, various modes of operation using Cr4+:YAG as laser gain medium have been achieved since the first tunable CW laser of Cr4+:YAG bulk gain medium was demonstrated by Shestakov, et al in 1988. Experimentally, the Cr4+:YAG crystal fiber was grown by the laser-heated pedestal growth (LHPG) method which provides outstanding crystal quality and can easily change growth conditions, such as growth speed and core diameter. A double cladding technique was developed with pure YAG, silica/YAG mixture, and pure silica as the core, inner cladding, and outer cladding, respectively. The smallest core diameter we achieved is 11 mm. In this thesis, the fabrication process of the Cr4+:YAG crystal fiber laser involving crystal fiber growth, sample preparation, and coating design will be presented in detail. In order to understand the relation between the microstructure of Cr4+:YAG crystal fibers and the growth conditions, high-resolution transmission electron microscopy (HRTEM) was employed, which reveals the nano-scale information in the core region, the inner-outer cladding interface, and the mechanism of inter-diffusion process during growth. In addition, the thesis also describes the specimen preparation procedures of crystal fibers for the HRTEM analysis. Furthermore, quantitative analysis of Cr4+:YAG crystal fiber was employed by electron-probe micro-analyzer (EPMA) and energy dispersive X-ray spectrometer (EDX), showing accurate characterization of the constitute elements and concentrations. The comparison of Cr4+ fluorescence and dopant concentration of CaO and Cr2O3 will also be presented in this thesis.
8

The Study and Fabrication of Cr4+:YAG Crystal Fiber Amplifier

Liu, Geng-Yu 21 July 2005 (has links)
The maximum capacity of an optical fiber transmission system more than doubled every year to match the fast-growing communication need. The technology break through in dry fiber fabrication opens the possibility for fiber bandwidth all the way from 1.3 mm to 1.6 mm. The fast increasing demand of communication capacity results in the emergence of wavelength division multiplexing (WDM) technology, which results in the need for wideband optical amplifier. Cr4+:YAG has a strong spontaneous emission that covers 1.3 mm to 1.6 mm. Besides, its absorption spectrum is between 0.9 mm to 1.2 mm, which matches with the pumping source in current erbium doped optical amplifier. Such a fiber is, therefore, eminently suitable for optical amplifier applications. We have successfully fused the double cladding Cr4+:YAG crystal fiber with single mode fiber by fusion splicer. The crystal fibers are grown by the laser-heated pedestal growth technique. The splicing parameters are optimized to achieve an insertion loss of below 1 dB. Since, the core diameter tapering will increase the propagation loss and reduce the gross gain. Adiabatically tapered fiber is discussed. Simulations are performed to predict the loss, and compare with the experimental results, then find out the way to improve the gross gain. Numerical simulation indicates that the gross gain could reach 37.2 dB at 0.5 W pump, if the core diameter of the double cladding Cr4+:YAG crystal fiber is reduced to 5 mm. In the future, in order to increase gross gain we will improve the mode matching between the cores of single mode fiber and the double cladding Cr4+:YAG crystal fiber. Gradual change of the refractive index at the splicing region as well as high Cr4+ doping concentration can also improve the gross gain.
9

Spectroscopic study on the fluorescence of Cr ions in double-clad Cr:YAG crystal fiber

Chen, Jian-Cheng 12 July 2006 (has links)
In this study, we have successfully demonstrated the use of laser scanning confocal microscopy in studying the fluorescence spectroscopy of Cr3+ and Cr4+ ions in Cr:YAG crystal fibers, double-clad crystal fibers, and glass fibers.
10

The Study and Fabrication of Super-Wideband Optical Amplifier Based on Cr4+:YAG Crystal Fiber

Su, Weu-zhi 17 July 2006 (has links)
The maximum capacity of an optical fiber transmission system more than doubled every year to match the fast-growing communication need. The technology break through in dry fiber fabrication opens the possibility for fiber bandwidth all the way from 1.3 £gm to 1.6 £gm. The fast increasing demand of communication capacity results in the emergence of wavelength division multiplexing (WDM) technology, which results in the need for wideband optical amplifier. Cr4+:YAG has a strong spontaneous emission that covers 1.3 £gm to 1.6 £gm. Besides, its absorption spectrum is between 0.9 £gm to 1.2 £gm, which matches with the pumping source in current erbium doped optical amplifier. Such a fiber is, therefore, eminently suitable for optical amplifier applications. We have successfully fused the double cladding Cr4+:YAG crystal fiber with single mode fiber by fusion splicer. The crystal fibers are grown by the laser-heated pedestal growth technique. The splicing parameters are optimized to achieve an insertion loss of 3.8 dB. Througth the splicing images, we can quantitatively analyze the splicing results caused by fine tuned parameters, and aimed at the evolution of the ASE, that is dissipated into inner cladding. The simulation program is revised with better fitting. We can find the reason why net gain is under 0 dB by simulation result, and find the way to improve. Numerical simulation indicates that the gain can reach 2 dB at 1 W pump, if the core diameter of the double cladding Cr4+:YAG crystal fiber is reduced to 10 £gm. In the future, we¡¦ll reduce the core diameter of Cr4+:YAG crystal double cladding fiber to less than 10 £gm, and enhance the Cr4+ ion concentration to lower the insertion loss after two-sided splicing, Hopefull, super-wideband optical amplifier can be realized.

Page generated in 0.0721 seconds