• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 12
  • 8
  • 7
  • 3
  • 2
  • Tagged with
  • 53
  • 53
  • 24
  • 16
  • 9
  • 9
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Design and Fabrication of 1550nm Semiconductor Optical Amplifiers

Yeh, Tung-Kun 08 July 2004 (has links)
In this thesis, We have fabricated 1.55
2

Characterizations and Applications of Distributed ElectroabsorptionModulator Integrated Semiconductor Optical Amplifier

Wu, Jui-pin 28 July 2009 (has links)
In this paper, a distributed Electroabsorption Modulator (EAM) monolithically integrated with Semiconductor Optical Amplifier (SOA) is analyzed. Using the distributed effects on the optical modulation and amplification, several advantages have been found in this work, such as high-speed modulation, microwave performance, low nose properties, and low chirp, which is quite fitted to the requirements of optical fiber communications. EAMs have been widely used due to high-speed, high extinction ratio, the compactness, and the capability of integration. However, due to the highly loaded capacitance in the waveguide, EAMs generally suffer from high microwave reflection and thus low modulation efficiency during high-speed modulation. By the distributed structure, SOA-integrated EAMs can not only enhance the impedance match by adopting distributed high impedance transmission line (HITL), but also offer optical gain. By the optical processing scheme of re-amplification and re-modulation, it also has been found that the extra amplified spontaneous emission (ASE) noise coming from SOA can be reduced to get lower noise figure (NF). Appling the saturation on SOA, the positive frequency chirp of EAM can be compensated to give overall low chirp. By the distributed structure, chirp compensation has been realized by this characterization. In this work, the distributed EAM-SOA scheme and the traditional single section EAM-SOA scheme are used for comparison, higher speed and lower NF are observed in distributed scheme. Due to impedance matching improvement in distributed scheme, a -3dB bandwidth of higher than 40GHz and 40Gbit/s data transmission is achieved, while a 15GHz of -3dB bandwidth is obtained in single device. Also, in 10Gbit/s data transmission, a 3dB lower of power penalty occurs in distributed scheme, while the lower NF is the mainly dominating mechanism.
3

The Study and Fabrication of Cr4+:YAG Crystal Fiber Amplifier

Liu, Geng-Yu 21 July 2005 (has links)
The maximum capacity of an optical fiber transmission system more than doubled every year to match the fast-growing communication need. The technology break through in dry fiber fabrication opens the possibility for fiber bandwidth all the way from 1.3 mm to 1.6 mm. The fast increasing demand of communication capacity results in the emergence of wavelength division multiplexing (WDM) technology, which results in the need for wideband optical amplifier. Cr4+:YAG has a strong spontaneous emission that covers 1.3 mm to 1.6 mm. Besides, its absorption spectrum is between 0.9 mm to 1.2 mm, which matches with the pumping source in current erbium doped optical amplifier. Such a fiber is, therefore, eminently suitable for optical amplifier applications. We have successfully fused the double cladding Cr4+:YAG crystal fiber with single mode fiber by fusion splicer. The crystal fibers are grown by the laser-heated pedestal growth technique. The splicing parameters are optimized to achieve an insertion loss of below 1 dB. Since, the core diameter tapering will increase the propagation loss and reduce the gross gain. Adiabatically tapered fiber is discussed. Simulations are performed to predict the loss, and compare with the experimental results, then find out the way to improve the gross gain. Numerical simulation indicates that the gross gain could reach 37.2 dB at 0.5 W pump, if the core diameter of the double cladding Cr4+:YAG crystal fiber is reduced to 5 mm. In the future, in order to increase gross gain we will improve the mode matching between the cores of single mode fiber and the double cladding Cr4+:YAG crystal fiber. Gradual change of the refractive index at the splicing region as well as high Cr4+ doping concentration can also improve the gross gain.
4

A Study of Modulation Doped Semiconductor Optical Amplifier and Ring Laser

Hsueh, Chih-Hsuan 22 July 2005 (has links)
In this thesis, we use InP based multiple quantum well epi-wafer with modulation doping in the active layer to design the semiconductor optical amplifier and ring laser for the optical communication at 1.55£gm wavelength. We also finish the mask design and fabrication of theses two devices. Besides, we have established an optical measurement system, including the L-I measurement, the optical spectrum measurement and the far field measurement, to test the device parameters. In the device process, we use the new method, called the Multi-Step Undercutting, to precisely control the undercut in the wet etching process. With this technique, we can get a smooth and vertical sidewall for our devices. For the semiconductor optical amplifier, we design two different types, one is the Fabry-Perot Amplifier and the other is the Traveling Wave Amplifier. We use the Multi-Step Undercutting process in the fabrication of these two devices. The main parameters for semiconductor optical amplifier are the change of the output power versus the input current, the spontaneous emission spectrum and the photocurrent spectrum. For the ring laser, we combine the concept of Loop Mirror and Asymmetric Mach-Zehnder Interferometer to obtain the laser with good side mode suppression for a single wavelength light source.
5

Fabrication and Measurement of Semiconductor Optical Amplifiers and Ring Lasers

Chen, Jheng-de 10 July 2006 (has links)
In this thesis, we focus on the investigation of semiconductor optical amplifier and ring laser. We use InP based multiple quantum well epi-wafer with modulation doping in the active layer to design the semiconductor optical amplifier and ring laser for the optical communication at 1.55£gm wavelength. We combine the concept of Loop Mirror and Asymmetric Mach-Zehnder Interferometer to obtain the laser with good side mode suppression for a single wavelength light source. For the semiconductor optical amplifier, we design two different types, one is the Fabry-Perot Amplifier and the other is the Traveling Wave Amplifier. Furthermore, We use the Multi-Step Undercutting process in the fabrication of these two devices. We have established an optical measurement system, including the L-I measurement, the optical spectrum measurement and the far field measurement, to test the device parameters. After annealing, these devices with two different serial number exhibited the contact resistances of 9£[ and 16£[, respectively. Under CW operation, these FPA exhibited the threshold current of 62mA and 70mA at 20¢J, respectively. The stimulated emission wavelength was at 1531nm and 1522nm, respectively.
6

The Study and Fabrication of Super-Wideband Optical Amplifier Based on Cr4+:YAG Crystal Fiber

Su, Weu-zhi 17 July 2006 (has links)
The maximum capacity of an optical fiber transmission system more than doubled every year to match the fast-growing communication need. The technology break through in dry fiber fabrication opens the possibility for fiber bandwidth all the way from 1.3 £gm to 1.6 £gm. The fast increasing demand of communication capacity results in the emergence of wavelength division multiplexing (WDM) technology, which results in the need for wideband optical amplifier. Cr4+:YAG has a strong spontaneous emission that covers 1.3 £gm to 1.6 £gm. Besides, its absorption spectrum is between 0.9 £gm to 1.2 £gm, which matches with the pumping source in current erbium doped optical amplifier. Such a fiber is, therefore, eminently suitable for optical amplifier applications. We have successfully fused the double cladding Cr4+:YAG crystal fiber with single mode fiber by fusion splicer. The crystal fibers are grown by the laser-heated pedestal growth technique. The splicing parameters are optimized to achieve an insertion loss of 3.8 dB. Througth the splicing images, we can quantitatively analyze the splicing results caused by fine tuned parameters, and aimed at the evolution of the ASE, that is dissipated into inner cladding. The simulation program is revised with better fitting. We can find the reason why net gain is under 0 dB by simulation result, and find the way to improve. Numerical simulation indicates that the gain can reach 2 dB at 1 W pump, if the core diameter of the double cladding Cr4+:YAG crystal fiber is reduced to 10 £gm. In the future, we¡¦ll reduce the core diameter of Cr4+:YAG crystal double cladding fiber to less than 10 £gm, and enhance the Cr4+ ion concentration to lower the insertion loss after two-sided splicing, Hopefull, super-wideband optical amplifier can be realized.
7

InGaAlAs/InP Semiconductor Optical Amplifier Structures Grown by Molecular Beam Epitaxy

Tsai, Yao-Tsong 26 June 2003 (has links)
The work of this thesis includes the growth of TE polarization and polarization insensitive semiconductor optical amplifier structures by molecular beam epitaxy. The former is suited to fabricate the SOA and laser of the emitter, the latter is suited to fabricate the SOA of the repeater and receiver. The materials of InAl(1)As, InGa(1)Al(2)As and InGa(2)As were used to be the cladding layer, SCH layer and quantum well(QW), respectively. The first kind of our SOA structures is for 1.55-£gm TE polarization. The materials of InGa(1)As and InGa(2)As were used to be QW and sub-well, respectively. The second kind of our SOA structures is for 1.55-£gm polarization insensitive. To get polarization insensitive characteristics we use tensile strained InGa(3)As material and add two very thin compressive strain layers, InGa(1)As, in QWs to be sub-wells to mostly confine hh1 state. It has the effect of reducing red shift on the e1-hh1 transition and help to partially balance the strain in QW before the thickness of the tensile strained InGa(3)As exceeds one half of the critical layer thickness. These two kinds of structures include three QWs with modulation doping. It can reduce transparency current and noise figure and increase the saturation output power of SOA with the n-type modulation doping. We had successfully grown the polarization insensitive SOA structure for 1.52-£gm. The wavelength of TE polarization SOA structures we grew were at 1.45(µm) and 1.47(µm) and there were somewhat differences between the designed and grown. We can increase the PL efficiency after rapid thermal annealing at 550¢J for 30(s)~45(s).
8

The Study and Fabrication of Ultra-broadband Optical Amplifier Based on Cr4+:YAG Double-clad Crystal Fiber

Zhuo, Wen-Jun 03 July 2008 (has links)
Abstract The maximum capacity of an optical fiber transmission system is more than doubled every year to cater the fast-growing communication need. The technology breakthrough in dry fiber fabrication opens the possibility for fiber bandwidth from 1.3 um to 1.6 um. The fast increasing demand of communication capacity results in the emergence of wavelength division multiplexing (WDM) technology, which results in the need for ultra-broadband optical amplifier. Cr4+:YAG has a strong spontaneous emission spectrum covers from 1.3 um to 1.6 um. In addition, its absorption spectrum is between 0.9 um to 1.2 um, which matches with the pumping source in current erbium doped optical amplifier. Such fiber is, therefore, eminently suitable for optical amplifier applications. In this thesis, we introduce the development of ultra-broadband optical amplifier using the double-clad Cr4+:YAG crystal fiber, which is grown by the laser heated pedestal growth (LHPG) technique. With the butt-coupling method, the insertion loss decreases to 2.0 dB ~ 2.9 dB in a SMF-Cr4+:YAG DCF-SMF configuration at signal wavelength from 1.26 to 1.64 um. A gross gain of 3.2 dB is demonstrated at 0.7 W bi-directional pump power at present. Moreover, theoretical models and numerical simulations have been developed to find out a better method for experiments. Numerical simulation indicates that the pump ESA will seriously impede the development of optical amplifier using the double-clad Cr4+:YAG crystal fiber. In the future, in order to reduce pump ESA we attempt to use cladding pump scheme instead of core pump scheme and to choose pump wavelength at 925 nm instead of 1064 nm,. At the same time, we will also try to grow crystal fiber of smaller core diameter and to extend its length to improve gain performance.
9

Growth System Improvement and Characterization of Chromium-doped YAG Crystal Fiber

Huang, Kuang-Yao 14 October 2008 (has links)
Cr4+:YAG is an attractive gain medium due to its broad 3-dB emission spectra all the way from 1253 nm to 1530 nm that just cover the low loss window of silica fiber. Such a broadband characteristic offers a potential to develop a broadband amplified spontaneous emission (ASE) light source, optical amplifier, and tunable laser. Growing the Cr4+:YAG bulk crystal into fiber form is necessary for generating larger gain by the better optical confinement of the waveguide structure. For the application of laser, it is superior to bulk crystal for reduced lasing threshold and better slope efficiency due to also the optical confinement effect and better heat dissipation. Laser heated pedestal growth (LHPG) method has been used to grow high purity crystal fibers due to its crucible free nature. A novel cladding technique, co-drawing LHPG (CDLHPG), was developed to solve core-reduction problem and obtained a double-clad fiber (DCF) structure. But the power fluctuation of heating laser caused large core variation of Cr4+:YAG DCF, and further impaired the optical performance. An innovating method for suppressing the fluctuation of heating power, sapphire tube assisted CDLHPG technique, was developed and combined with power feedback control program. By this technique, 10-£gm-core Cr4+:YAG DCFs which meet the adiabatic propagation criterion were fabricated. By comparing with ASE and optical amplifier experimental data, cross sections of pump absorption, emission, and excited-state absorptions (ESAs) of pump and signal were determined. Pump ESA loss limited the optical performance that could be solve by using cladding pump scheme. A record-low threshold Cr4+:YAG DCF laser with two slopes with respect to absorbed pump power was achieved at room temperature. The threshold pump powers were 2.5 mW and 96 mW in the low and high absorbed pump powers with the same output coupler transmittance of 3.8%, respectively. The slope efficiencies of the fiber laser were 0.4% and 6.9%, respectively. By numerical simulation, 56% slope efficiency can be achieved with a length of 7 cm and an output reflectance of 80%. Our group also firstly used the ASE as the light source of optical coherence tomography, an axial resolution of 3.5 £gm was achieved.
10

Linearization techniques to suppress optical nonlinearity

Tabatabai, Farbod January 2009 (has links)
This thesis is shown the implementation of the linearization techniques such as feedforward and pre-distortion feedback linearization to suppress the optical components nonlinearities caused by the fibre and semiconductor optical amplifier (SOA). The simulation verified these two linearization techniques for single tone direct modulation, two tone indirect modulation and ultra wideband input to the optical fibre. These techniques uses the amplified spontaneously emission (ASE) noise reduction in two loops of SOA by a feed-forward and predistortion linearizer and is shown more than 6dB improvement. Also it investigates linearization for the SOA amplifier to cancel out the third order harmonics or inter-modulation distortion (IMD) or four waves mixing. In this project, more than 20 dB reductions is seen in the spectral re-growth caused by the SOA. Amplifier non-linearity becomes more severe with two strong input channels leading to inter-channel distortion which can completely mask a third adjacent channel. The simulations detailed above were performed utilizing optimum settings for the variable gain, phase and delay components in the error correction loop of the feed forward and Predistortion systems and hence represent the ideal situation of a perfect feed-forward and Predistortion system. Therefore it should be consider that complexity of circuit will increase due to amplitude, phase and delay mismatches in practical design. Also it has describe the compatibility of Software Defined Radio with Hybrid Fibre Radio with simulation model of wired optical networks to be used for future research investigation, based on the star and ring topologies for different modulation schemes, and providing the performance for these configurations.

Page generated in 0.3852 seconds