• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 33
  • 27
  • 24
  • 4
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 97
  • 97
  • 56
  • 25
  • 24
  • 18
  • 17
  • 15
  • 12
  • 11
  • 11
  • 10
  • 10
  • 9
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Preparação e caracterização de fibras monocristalinas de SrTiO3, SrTi(1-X)RuXO3 e de Sr2RuO4. / Preparation and characterization of SrTiO3, SrTi(1-X) RuXO3 and Sr2RuO4 single crystal fibers.

Diogenes Reyes Ardila 12 July 1996 (has links)
Neste trabalho desenvolvemos processos de crescimento e caracterização de fibras monocristalinas de SrTiO3 e Sr2RuO4 puros e como soluções sólidas através da técnica LHPG (laser heated pedestal growth). Esses processos são descritos desde as sínteses dos compostos, preparação dos nutrientes e sementes necessários para aplicação da técnica. Alguns resultados inéditos foram obtidos relativos à influência de cada um desses procedimentos e das alterações de parâmetros próprios da técnica na qualidade e características das fibras monocristalinas obtidas através dos resultados da caracterização estrutural, composicional e elétrica das fibras desses compostos. Diversas fibras monocristalinas de SrTiO3 puro foram obtidas diretamente a partir de nutrientes dos reagentes SrCO3 e TiO2, enquanto que, fibras monocristalinas de Sr2RuO4, (um novo composto de grande interesse tecnológico), foram obtidas de nutrientes de SrRuO3. A importância desses dois últimos resultados, inéditos até então, será discutida em detalhes neste trabalho. Deficiência de rutênio de até 75% do valor nominal dos nutrientes, além de gradientes de composição indesejados, foram encontrados no volume das fibras monocristalinas de algumas composições da solução sólida. Neste último caso a qualidade das fibras parece depender fortemente da taxa de puxamento do nutriente e da semente, respectivamente, bem como do processo utilizado na preparação da matéria prima. / In this work we developed characterization and crystal growth processes of Sr2RuO4, pure SrTiO3 and some compounds of the solid solution SrTi1-xRuxO3 through the LHPG (laser heated pedestal growth) technique. These processes are described from the synthesis of compounds and the preparation of seeds and nutrients necessary for the application of the technique. Some new results related to change of parameters of the technique and the influence of each preparation procedure on the quality and characteristics of the fibers were obtained through the results of the structural, compositional and electrical characterization of single crystal fibers of these compounds. Several SrTiO3 single crystal fibers were directly obtained from nutrients of the reagents SrCO3 and TiO2 while Sr2RuO4 (a new compound of considerable technological interest) single crystal fibers were obtained from SrRuO3 nutrients. The importance of these last two results, that are unknown up to now, will be discussed in detail in this work. Ruthenium deficiency up to 75% of the nominal value of the nutrients, besides undesired composition gradients, were found in the bulk of solid solution single crystal fibers of some compositions. In this last case, apparently the qualities of the single crystal fibers have a strong dependence on the feeding and pulling rates of nutrient and seed, respectively, as well as of the processes used for start materials preparation.
32

Preparação e propriedades de fibras monocristalinas de Sr2MO3, Sr2MO4(M=Ru, Ti, V) e das suas soluções sólidas. / Preparation and properties of single crystal fibers of Sr2MO3, Sr2MO4(M=Ru, Ti, V) and their solid solutions.

Diogenes Reyes Ardila 02 February 2001 (has links)
Nesta tese estudamos as condições para o crescimento estável dos compostos óxidos de metais de transição Sr2MO4 e das soluções sólidas SrM1-xM\'xO3, (M,M\'=Ru,Ti,V) pela técnica de fusão a laser de pedestais. Os nutrientes e sementes policristalinos utilizados para produzir fibras monocristalinas crescidas por fusão a laser não foram, em geral, nem queimados nem sinterizados antes do seu uso. Dois caminhos diferentes de processamento foram seguidos para a preparação de amostras cristalinas. A melhor condição de crescimento cristalino encontrada foi a que envolve o uso de atmosfera gasosa isostática como ambiente de crescimento cristalino. Porém, enquanto que fibras monocristalinas altamente homogêneas de SrTiO3, Sr2RuO4 e SrVO3 foram obtidas desta maneira, foi muito difícil estabelecer condições aceitáveis de crescimento cristalino para as soluções sólidas. A forte influência da natureza química do ambiente de crescimento cristalino e dos reagentes químicos de partida na qualidade da fibra monocristalina foi investigada. Explicações para as principais dificuldades encontradas no crescimento tanto das composições extremas como das suas soluções sólidas foram inferidas usando argumentos termodinâmicos e cálculos semi-empíricos dos parâmetros importantes envolvidos no processo de crescimento cristalino. A caracterização das fibras monocristalinas incluiu algumas adaptações aos métodos tradicionais de caracterização da resistividade elétrica, microestrutura e composição em cristais volumétricos. / In this thesis we have studied the conditions for the stable growth of the transition metal oxide compounds Sr2MO4 and solid solutions SrM1-xM\'xO3, (M,M\'=Ru,Ti,V) by the laserheated pedestal growth (LHPG) technique. The polycrystalline seed and feed rods used to grow single crystal fibers have, in general, not been fired or sintered prior to use. Two different processing methods were followed to prepare single crystal samples. The best crystal growth condition found was one involving the use of isostatic gaseous atmosphere as the crystal growth ambient. However, while highly homogeneous SrTiO3, Sr2RuO4 and SrVO3 single crystal fibers were obtained in this way, it was very difficult to establish acceptable crystal growth conditions for the preparation of the solid solutions. The strong influence of the chemical nature of the crystal growth ambient and starting reagents on the single crystal fiber quality was investigated. Explanations for the main difficulties found to grow both the extreme compositions and their solid solutions have been inferred using thermodynamic arguments and semi-empirical calculations of important parameters involved in the crystal growth process. Single crystal fibers characterization included some adaptations to the traditional electrical resistivity, microstructural and compositional methods practised in bulk crystals.
33

Development of Polychromatic Laser Beacon Fiber Coupling System Based on Photonic Crystal Fibers

Sangam, Ramyaa Ramesh January 2013 (has links)
No description available.
34

Hollow core fibre-based gas discharge laser systems and deuterium loading of photonic crystal fibres

Bateman, Samuel January 2015 (has links)
Research towards the development of a gas-discharge fibre laser using noble gases, with target emission wavelengths in the mid-IR. Additional and separate work on gas treatment methods for managing the formation of photo-induced defects in silica glass.
35

Novel coherent supercontinuum light sources based on all-normal dispersion fibers

Heidt, Alexander Matthias 12 1900 (has links)
Thesis (PhD)--Stellenbosch University, 2011. / ENGLISH ABSTRACT: The concept of broadband coherent supercontinuum (SC) generation in all-normal dispersion (ANDi) fibers in the near-infrared, visible and ultraviolet (UV) spectral regions is introduced and investigated in detail. In numerical studies, explicit design criteria are established for ANDi photonic crystal fiber (PCF) designs that allow the generation of flat and smooth ultrabroad spectral profiles without significant fine structure and with excellent stability and coherence properties. The key benefit of SC generation in ANDi fibers is the conservation of a single ultrashort pulse in the time domain with smooth and recompressible phase distribution. In the numerical investigation of the SC generation dynamics self-phase modulation and optical wave breaking are identified as the dominant nonlinear effects responsible for the nonlinear spectral broadening. It is further demonstrated that coherence properties, spectral bandwidth and temporal compressibility are independent of input pulse duration for constant peak power. The numerical predictions are in excellent agreement with experimental results obtained in two realizations of ANDi PCF optimized for the near-infrared and visible spectral region. In these experiments, the broadest SC spectrum generated in the normal dispersion regime of an optical fiber to date is achieved. The exceptional temporal properties of the generated SC pulses are verified experimentally and their applicability for the time-resolved study of molecular dynamics in ultrafast transient absorption spectroscopy is demonstrated. In an additional nonlinear pulse compression experiment, the SC pulses obtained in a short piece of ANDi PCF could be temporally recompressed to sub-two cycle durations by linear chirp compensation. Numerical simulations show that even shorter pulse durations with excellent quality can be achieved by full phase compensation. The concept is further extended into the UV spectral regime by considering tapered optical fibers with submicron waist diameter. It is shown that coherent SC spectra with considerable spectral power densities in the usually hard to reach wavelength region below 300 nm can be generated using these freestanding photonic nanowires. Although technological difficulties currently prevent the fabrication of adequate nanofibers, the concept could be experimentally verified by coherent visible octave-spanning SC generation in tapered suspended core fibers with ANDi profile. The work contained in this thesis therefore makes important contributions to the availability and applicability of fiber-based broadband coherent SC sources with numerous high-impact applications in fundamental science and modern technology. / AFRIKAANSE OPSOMMING: Die konsep van breëband koherente superkontinuum (SK) in alles-normaal dispersiewe (ANDi) vesels in die naby-infrarooi, sigbare en ultraviolet (UV) spektrale gebiede word voorgestel en in detail ondersoek. In numeriese studies word eksplisiete ontwerpskriteria vasgestel vir ANDi fotoniese kristal vesel (FKV) ontwerpe wat dit moontlik maak om plat en gladde ultra-breë spektrale profiele te genereer sonder noemenswaardige fynstruktuur en met uitstekende stabiliteit en koherensie eienskappe. Die sleutel voordeel van SK genering in ANDi vesels is die behoud van ’n enkele ultrakort puls in tyd met ’n gladde en saamdrukbare fase distribusie. In die numeriese ondersoek van die SK generering is die dinamika van fase selfmodulering geïdentifiseer as die dominante nie-lineêre effek wat verantwoordelik is vir die nie-lineêre spektrale verbreding. Daar word voorts aangetoon dat die koherensie eienskappe, spektrale bandwydte en saamdrukbaarheid in tyd onafhanklik is van die inset pulsduur vir konstante drywing. Die numeriese voorspellings stem uitstekend ooreen met die eksperimentele resultate wat verkry is met twee ANDi FKVÕs wat optimeer is vir die naby-infrarooi en sigbare spektrale gebied. In hierdie eksperimente is die breedste SK spektrum gegenereer wat tot hede in die normaal dispersiewe regime met ’n optiese vesel behaal is. Die besondere eienskappe van die genereerde SK pulse is eksperimenteel bevestig en die toepasbaarheid vir tyd opgelosde studie van molekulêre dinamika is gedemonstreer. In ’n addisionele nie-lineêre puls kompressie eksperiment is SK pulse verkry in ’n kort stuk ANDi FKV wat in tyd saamgedruk kon word tot sub-twee siklus tydsduur deur liniêre tjirp kompensering. Numeriese simulasies toon aan dat selfs korter pulse met uitstekende kwaliteit behaalbaar is met volledige fase kompensasie. Die konsep is verder uitgebrei na die UV spektrale gebied deur ’n koniese vesel te beskou met sub-mikron diameter. Daar is aangetoon dat koherente SK spektra met noemenswaardige spektrale drywing in die golflengte gebied onder 300 nm, wat gewoonlik as moeilik toeganklik beskou word, bereik kan word deur hierdie vrystaande fotoniese nano-vesels aan te wend. Alhoewel tegnologiese probleme die vervaardiging van voldoende nano-vesels verhinder, kon die konsep eksperimenteel bewys word deur koherente sigbare oktaafspannende SK te genereer in koniese gesuspendeerde kern vesels met ’n ANDi profiel aan te wend. Die werk wat in die tesis vervat is, maak dus belangrike bydraes tot die beskikbaarheid en toepasbaarheid van vesel gebaseerde breëband koherente SK bronne met verskeie hoë impak toepassings in fundamentele wetenskap en moderne tegnologie.
36

Realizing a mid-infrared optically pumped molecular gas laser inside hollow-core photonic crystal fiber

Jones, Andrew Michael January 1900 (has links)
Doctor of Philosophy / Department of Physics / Kristan L. Corwin / This research has focused on the development, demonstration, and characterization of a new type of laser based on optically-pumped gases contained within hollow optical fibers. These novel lasers are appealing for a variety of applications including frequency metrology in the mid-infrared, free-space communications and imaging, and defense applications. Furthermore, because of the hollow core fibers used, this technology may provide the means to surpass the theoretical limits of output power available from high power solid-core fiber laser systems. Gas-filled hollow-core fiber lasers based on population inversion from acetylene ([superscript]12C[subscript]2H[subscript]2) and hydrogen cyanide (HCN) gas contained within the core of a kagome-structured hollow-core photonic crystal fiber have now been demonstrated. The gases are optically pumped via first order rotational-vibrational overtones near 1.5 μm using 1-ns duration pulses from a home-built optical parametric amplifier. Narrow-band laser emission peaks in the 3-μm region corresponding to the ΔJ = ±1 dipole allowed rotational transitions between the pumped vibrational overtone modes and the fundamental C-H stretching modes have been observed in both molecules. High gain resulting from tight confinement of the pump and laser light together with the active gas permits these lasers to operate in a single pass configuration, without the use of any external resonator structure. Studies of the generated mid-infrared pulse energy, threshold energy, and slope efficiency as functions of the launched pump pulse energy and gas pressure have been performed and show an optimum condition where the maximum laser pulse energy is achieved for a given fiber length. The laser pulse shape and the laser-to-pump pulse delay have been observed to change with varying pump pulse energy and gas pressure, resulting from the necessary population inversion being created in the gases at a specific fiber length dependent on the launched pulse energy. Work is on going to demonstrate the first continuous wave version of the laser which may be used to produce a single coherent output from many mutually incoherent pump sources.
37

Crescimento e propriedades de fibras monocristalinas de niobatos e tantalatos preparadas pela técnica LHPG / Growth and properties of single crystal fibers of niobates and tantalates prepared by technical LHPG

Silva, Renato de Almeida 21 February 2005 (has links)
Este trabalho visa dar uma importante contribuição à pesquisa de novos materiais, através da determinação de condições otimizadas para obtenção pela técnica LHPG de fibras monocristalinas de compostos óxidos. Com esse objetivo fibras foram obtidas com êxito para compostos que podem ser utilizados como meios ativos para lasers de estado sólido (CaNb2O6 e GdTaO4), em aplicações de óptica de raios X (cristais gradientes dos sistemas GdTaO4-ErTaO4 e GdTaO4-YbTaO4) e também compostos que apresentam supercondutividade (EuNbO3, Yb2NbO5, Sm2NbO5 e Er2NbO5). A preparação dos pedestais se mostrou uma etapa muito importante na preparação das várias fibras. A caracterização estrutural por técnicas de difração de raios X mostrou que fibras monocristalinas de CaNb2O6 e GdTaO4 podem ser obtidas rapidamente e com alta qualidade cristalina sendo altamente adequadas para aplicações em óptica. Adicionalmente resultados de medidas espectroscópicas mostraram que as fibras CaNb2O6 dopadas com Nd+3 são boas candidatas para desenvolvimento de micro-lasers. Monocristais com gradiente controlado de parâmetro de rede foram obtidos pela primeira vez para os sistemas GdTaO4- ErTaO4 e GdTaO4-YbTaO4. A estratégia aplicada aqui possibilitou a obtenção de um gradiente composicional e de parâmetros de rede com ótima linearidade. Para o sistema GdTaO4- ErTaO4 foi obtido um gradiente de espaçamento de rede de 1,24%/cm para a reflexão (4 -4 4). Para os cristais GdTaO4- ErTaO4 um gradiente de 2,9%/cm para a reflexão (6 -4 0) foi obtido, sendo este o maior valor já observado em cristais gradientes. Através de uma inovação, utilizando Nb metálico em pó na preparação dos pedestais, fibras do composto EuNbO3 foram obtidas pela primeira vez, ao nosso conhecimento, através de uma técnica utilizando fusão. A aplicação desta mesma inovação buscando a obtenção de fases com esta mesma estrutura para outras terras raras, proporcionou a descoberta de três fases inéditas, Yb2NbO5, Sm2NbO5 e Er2NbO5. A estrutura destas novas fases foi determinada e através de caracterizações magnéticas e elétricas iniciais observou-se que estas apresentam supercondutividade com temperaturas de transição, Tc, iguais a 12,5K, 6,5K e 14,9K respectivamente para Yb2NbO5, Sm2NbO5 e Er2NbO5 / This work aims to give an important contribution to the research of new materials, by determining optimized conditions for obtaining of single crystal fibers of oxide compounds by LHPG technique. With this objective fibers were successfully obtained for compounds which can be used as solid state lasers (CaNb2O6 e GdTaO4), for X-ray optics applications (gradient crystals of GdTaO4-ErTaO4 e GdTaO4-YbTaO4 systems) and also as superconducting compounds. The preparation of the pedestals was a very important stage in the obtaining of the various fibers, with influence in growth experiments and quality of the fibers. The structural characterization by X-ray diffraction techniques showed that CaNb2O6 and GdTaO4 single crystal fibers presenting high crystalline quality can be quickly obtained. These fibers can be highly suitable for optics applications. In addiction the results of spectroscopic measurements showed Nd+3 doped CaNb2O6 fibers are good candidates for development of micro-lasers. Single crystals with controlled lattice parameter gradient were obtained for the first time for GdTaO4- ErTaO4 e GdTaO4-YbTaO4 systems. The applied approach in here enabled to obtain a compositional and lattice parameters gradient presenting optimized linear behavior. For the GdTaO4- ErTaO4 system a lattice spacing gradient of 1.24%/cm for (4 -4 4) reflection was obtained. For GdTaO4-YbTaO4 crystals a gradient of 2.9%/cm was observed. This is the largest value of lattice spacing gradient up to this moment. By an innovation, using metallic Nb in the form of powder in preparing the pedestals, fibers of the EuNbO3 compound were obtained, being the first report by a fusion technique. The application of this innovation to obtain phases with this structure for others rare earth enabled the discovery of three new phases, namely Yb2NbO5, Sm2NbO5 and Er2NbO5. The structure of these new phases was determined and by magnetic and electric characterizations it was observed that the phases are superconductor materials with transition temperatures, Tc, equals to 12,5K, 6,5K and 14,9K respectively for Yb2NbO5, Sm2NbO5 and Er2NbO5. compounds
38

Development of an all-fibre source of heralded single photons

McMillan, Alex January 2012 (has links)
The preparation of single photons in a pure quantum state is a subject of great interest in physics, enabling the control of light at an unprecedented level. The ease with which certain degrees of freedom of photon states, such as polarisation, can be manipulated, along with the inherent resilience of photons to decoherence, makes them well suited for use as qubits. Recent rapid developments in the transmission and processing of quantum information, as well as the likely technological impact of potential real-world applications such as quantum cryptography and quantum computation, mean that the demand for high performance single photon sources is likely to increase in the near future. One approach to producing single photon states, which are known to be in a well-defined spatio-temporal mode without destructively measuring them, is to take advantage of nonlinear optics. Nonlinear processes can be used to realise frequency conversion by generating a single, correlated pair of photons from an intense pump laser source. The detection of one of the photons from a pair can then be used to indicate the presence of the other photon in the pair, a procedure known as heralding. This thesis describes the development of a source of heralded single photons at 1550 nm, generated directly in the core of a photonic crystal fibre (PCF). By taking advantage of low loss fibre components for the required spectral filtering of the generated photon state, a heralding fidelity of 52% was achieved. The source was designed to be used with a picosecond pulsed fibre laser, making it relatively low cost and maintenance free. With 148 mW of average pump power a heralded output photon rate of 6.4 × 104 s-1 was observed, demonstrating the brightness of the source. The purity of the generated single photons was established by measuring non-classical interference, with a visibility of 70%, between the photons output from this source and a source based on a PPLN waveguide. The fabrication of a series of birefringent PCFs for the generation of spectrally pure state photons at 1550 nm is also discussed. These PCFs will be useful for incorporation in the next generation of high performance, fibre-based photon sources.
39

Raman Characterization of Colloidal Nanoparticles using Hollow-core Photonic Crystal Fibers

Mak, Siu Wai Jacky 14 December 2011 (has links)
This Masters thesis investigates the ligand–particle binding interactions in the thiol–capped CdTe nanoparticles and dye adsorbed gold nanoparticles. In the CdTe nanoparticles, Raman modes corresponding to the CdTe core, thiol ligand and their interfacial layers were observed and correlated to the different nanoparticle properties. To the best of our knowledge, this is the first time that such strong Raman modes of the thiol-capped nanoparticles in aqueous solution have been reported. In the gold nanoparticle systems, gold–citrate binding interactions were observed as well as adsorption of the Raman dyes and binding with the polyethyleneglycol polymer coating and phospholipid coating. These observations coincided with findings from conventional optical techniques. In addition, gold nanoparticles were found to carbonize at high pump power and prolonged exposure time. In summary, the two nanoparticle characterizations demonstrated the high sensitivity and nondestructive nature of the photonic crystal fiber for Raman spectroscopy.
40

Raman Characterization of Colloidal Nanoparticles using Hollow-core Photonic Crystal Fibers

Mak, Siu Wai Jacky 14 December 2011 (has links)
This Masters thesis investigates the ligand–particle binding interactions in the thiol–capped CdTe nanoparticles and dye adsorbed gold nanoparticles. In the CdTe nanoparticles, Raman modes corresponding to the CdTe core, thiol ligand and their interfacial layers were observed and correlated to the different nanoparticle properties. To the best of our knowledge, this is the first time that such strong Raman modes of the thiol-capped nanoparticles in aqueous solution have been reported. In the gold nanoparticle systems, gold–citrate binding interactions were observed as well as adsorption of the Raman dyes and binding with the polyethyleneglycol polymer coating and phospholipid coating. These observations coincided with findings from conventional optical techniques. In addition, gold nanoparticles were found to carbonize at high pump power and prolonged exposure time. In summary, the two nanoparticle characterizations demonstrated the high sensitivity and nondestructive nature of the photonic crystal fiber for Raman spectroscopy.

Page generated in 0.0483 seconds