21 |
Space radiation-induced bystander effect : kinetics of biologic responses, mechanisms, and significance of secondary radiationsGonon, Géraldine 12 December 2011 (has links) (PDF)
Widespread evidence indicates that exposure of cell cultures to α particles results in significant biological changes in both the irradiated and non-irradiated bystander cells in the population. The induction of non-targeted biological responses in cell cultures exposed to low fluences of high charge (Z) and high energy (E) particles is relevant to estimates of the health risks of space radiation and to radiotherapy. Here, we investigated the mechanisms underlying the induction of stressful effects in confluent normal human fibroblast cultures exposed to low fluences of 1000 MeV/u iron ions (linear energy transfer (LET) ~151 keV/µm), 600 MeV/u silicon ions (LET ~50 keV/µm) or 290 MeV/u carbon ions (LET ~13 keV/µm). We compared the results with those obtained in cell cultures exposed, in parallel, to low fluences of 0.92 MeV/u α particles (LET ~109 keV/µm).Induction of DNA damage, changes in gene expression, protein carbonylation and lipid peroxidation during 24 h after exposure of confluent cultures to mean doses as low as 0.2 cGy of iron or silicon ions strongly supported the propagation of stressful effects from irradiated to bystander cells. At a mean dose of 0.2 cGy, only ~1 and 3 % of the cells would be targeted through the nucleus by an iron or silicon ion, respectively. Within 24 h post-irradiation, immunoblot analyses revealed significant increases in the levels of phospho-TP53 (serine 15), p21Waf1 (also known as CDKN1A), HDM2, phospho-ERK1/2, protein carbonylation and lipid peroxidation. The magnitude of the responses suggested participation of non-targeted cells in the response. Furthermore, when the irradiated cell populations were subcultured in fresh medium shortly after irradiation, greater than expected increases in the levels of these markers were also observed during 24 h. Together, the results imply a rapidly propagated and persistent bystander effect. In situ analyses in confluent cultures showed 53BP1 foci formation, a marker of DNA damage, in more cells than expected based on the fraction of cells traversed through the nucleus by an iron or silicon ion. The effect was expressed as early as 15 min after exposure, peaked at 1 h and decreased by 24 h. A similar tendency occurred after exposure to a mean absorbed dose of 0.2 cGy of 3.7 MeV α particles, but not after 0.2 cGy of 290 MeV/u carbon ions.Analyses in dishes that incorporate a CR-39 solid state nuclear track detector bottom identified the cells irradiated with iron or silicon ions and further supported the participation of bystander cells in the stress response. Mechanistic studies indicated that gap junction intercellular communication, DNA repair, and oxidative metabolism participate in the propagation of the induced effects.We also considered the possible contribution of secondary particles produced along the primary particle tracks to the biological responses. Simulations with the FLUKA multi-particle transport code revealed that fragmentation products, other than electrons, in cells cultures exposed to HZE particles comprise <1 % of the absorbed dose. Further, the radial spread of dose due to secondary heavy ion fragments is confined to approximately 10-20 µm Thus, the latter are unlikely to significantly contribute to the stressful effects in cells not targeted by primary HZE particles.
|
22 |
Modelagem de processos nucleares de alta energia em explosões solares utilizando o pacote FLUKATusnski, Daneele Saraçol 16 August 2018 (has links)
Submitted by Marta Toyoda (1144061@mackenzie.br) on 2018-10-09T18:14:36Z
No. of bitstreams: 2
Daneele Saraçol Tusnski.pdf: 4058221 bytes, checksum: b1d5f8ffb7c0a537e1fd3b66e0ee93a1 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Paola Damato (repositorio@mackenzie.br) on 2018-10-17T18:23:36Z (GMT) No. of bitstreams: 2
Daneele Saraçol Tusnski.pdf: 4058221 bytes, checksum: b1d5f8ffb7c0a537e1fd3b66e0ee93a1 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2018-10-17T18:23:36Z (GMT). No. of bitstreams: 2
Daneele Saraçol Tusnski.pdf: 4058221 bytes, checksum: b1d5f8ffb7c0a537e1fd3b66e0ee93a1 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Previous issue date: 2018-08-16 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Fundo Mackenzie de Pesquisa / The emission of 𝛾-rays in solar flares is produced by interactions of primary electrons and
ions accelerated to high energies with nuclei in the ambient solar atmosphere. The analysis
of the 𝛾-ray spectra observed during solar flares provides important diagnostics on the
mechanisms of primary particle acceleration and on the structure and evolution of the
ambient plasma. In this work we investigate the high energy nuclear processes that occur in
solar flares using FLUKA, a package of general purpose integrated routines for Monte Carlo
calculations of particle transport and interactions in matter. Our main aim is to validate
FLUKA as an effective tool for the modeling of nuclear processes in the context of solar
flares. In order to accomplish that, we have performed simulations of the 𝛾-ray spectrum
considering realistic models for the ambient solar atmosphere and beams of accelerated ions
(protons, 𝛼-particles and heavier nuclei) with different energy and angular distributions.
From the results obtained in the simulations with FLUKA, we have built templates for
the nuclear de-excitation lines emission spectrum and for the full 𝛾-ray emission spectrum,
which were incorporated to the program OSPEX for the fitting of spectra from observed
events. Using these templates in combination with standard-functions avaiable in the
programa OSPEX we have obtained statistically reasonable fittings for the 𝛾-ray spectra
of the July 23, 2002 and June 12, 2010 solar flares, similar to the fittings obtained with
templates built from nuclear de-excitation lines emission spectra calculated with the code
developed by Murphy et al. (2009). To the best of our knowledge, the fittings carried out
with the FLUKA templates for the full 𝛾-ray emission spectrum can be regarded as the
first attempt to use a single code to implement a self-consistent treatment of the several
spectral components in the energy range from ∼ 100’s keV to ∼ 100’s MeV. / A emissão de raios-𝛾 em explosões solares é produzida por interações de elétrons e íons
primários acelerados a altas energias com núcleos na atmosfera solar ambiente. A análise
dos espectros de raios-𝛾 observados durante as explosões solares fornece diagnósticos
importantes sobre os mecanismos de aceleração das partículas primárias e sobre a estrutura
e evolução do plasma ambiente. Neste trabalho investigamos os processos nucleares de
alta energia que ocorrem em explosões solares utilizando o FLUKA, um pacote de rotinas
integradas de uso geral para o cálculo Monte Carlo do transporte e das interações de
partículas na matéria. Nosso principal objetivo é validar o FLUKA como ferramenta
efetiva para a modelagem de processos nucleares no contexto de explosões solares. Para
tanto, realizamos simulações do espectro de raios-𝛾 considerando modelos realísticos para
a atmosfera solar ambiente e feixes de íons acelerados (prótons, partículas-𝛼 e núcleos
mais pesados) com diferentes distribuições energéticas e angulares. A partir dos resultados
obtidos nas simulações com o FLUKA, construímos templates para o espectro de emissão
de linhas de desexcitação nuclear e para o espectro completo de emissão de raios-𝛾, os
quais foram incorporados ao programa OSPEX para o ajuste de espectros de eventos
observados. Utilizando esses templates em combinação com funções-padrão disponíveis
no programa OSPEX obtivemos ajustes estatisticamente razoáveis para os espectros de
raios-𝛾 das explosões solares de 23 de julho de 2002 e 12 de junho de 2010, semelhantes aos
ajustes obtidos com templates construídos a partir de espectros de emissão de linhas de
desexcitação nuclear calculados com o código desenvolvido por Murphy et al. (2009). Até
onde sabemos, os ajustes realizados com os templates FLUKA para o espectro completo
de emissão de raios-𝛾 podem ser considerados como a primeira tentativa de utilizar um
único código para implementar um tratamento auto-consistente das várias componentes
espectrais na faixa de energia de ∼ 100’s keV a ∼ 100’s MeV.
|
23 |
Space radiation-induced bystander effect : kinetics of biologic responses, mechanisms, and significance of secondary radiations / Effet de proximité induit par ions lourds d'origine cosmique : cinétique des réponses biologiques, mécanismes et importance des radiations secondairesGonon, Géraldine 12 December 2011 (has links)
De nombreuses études ont montré que l'exposition de cultures cellulaires à des particules α conduit à des changements biologiques importants autant dans les cellules irradiées que dans les cellules bystander non-irradiées. L'étude des réponses biologiques non-ciblées dans des cultures cellulaires exposées à de faibles fluences d’ions lourds permet d’estimer les risques pour la santé du rayonnement spatial et de la radiothérapie. Nous avons caractérisé les mécanismes sous-jacents de l'induction d'effets stressants dans des cultures confluentes de fibroblastes normaux humains exposés à de faibles fluences d’ions fer de 1000 MeV/u (transfert d'énergie linéique (TEL) ~151 keV/µm), d’ions silicium de 600 MeV/u (TEL ~50 keV/µm) ou d’ions carbone de 290 MeV/u (TEL ~13 keV/µm). Nous avons comparé ces résultats avec ceux obtenus dans des cultures cellulaires exposées, en parallèle, à de faibles fluences de particules α de 0,92 MeV/u (TEL ~109 keV/µm). L'induction de dommages à l'ADN, les changements dans l'expression des gènes, la carbonylation des protéines et la peroxydation lipidique durant les 24 h suivant l'exposition de cultures confluentes à de faibles doses (0,2 cGy et plus) d’ions fer ou d'ions silicium ont très largement contribué à la propagation d’effets stressants des cellules irradiées aux cellules bystander non-irradiées. Pour une dose moyenne de 0,2 cGy, seules ~1 et 3 % des cellules seraient irradiées dans le noyau par un ion, respectivement, fer ou silicium. Les immunoblots ont révélés des augmentations significatives des niveaux de phospho-TP53 (sérine 15), p21Waf1 (CDKN1A), HDM2, phospho-ERK1/2, de carbonylation des protéines et de peroxydation lipidique dans les 24 h suivant l’exposition. L'ampleur de ces réponses suggère la participation de cellules non ciblées dans les effets observés. De plus, lorsque les populations cellulaires irradiées ont été ré-ensemencées dans un milieu de culture frais peu après l'irradiation, les niveaux de ces marqueurs ont aussi augmentés durant 24 h. Ensemble, ces résultats montrent un effet rapidement propagé et persistant. Des analyses in situ réalisées dans des cultures cellulaires confluentes ont montré que la formation de foyers de la protéine 53BP1, marqueur de dommages à l'ADN, touchait un nombre de cellules plus important que celui auguré par la fraction de cellules traversées dans le noyau par un ion fer ou silicium. Cet effet est exprimé dès 15 min suivant l'exposition, atteint son maximum 1 h après l’exposition puis diminue jusqu’à 24 h. Une tendance similaire s'est produite après exposition à une dose moyenne absorbée de 0,2 cGy de particules α de 3,7 MeV, mais non après 0,2 cGy d’ions carbone de 290 MeV/u.Des analyses utilisant des puits de cultures intégrant une fine épaisseur de CR-39, détecteur solide de traces nucléaires, et permettant ainsi l’identification des cellules irradiées aux ions fer ou silicium, confirment la participation de cellules bystander dans la réponse au stress. Des études mécanistiques ont, de plus, indiqué que les jonctions gap permettant la communication intercellulaire, certaines voies de la réparation de l’ADN, ainsi que le métabolisme oxydatif participent à la propagation des effets non ciblés induit par des radiations de haut TEL. Nous avons également examiné la contribution possible des particules secondaires produites le long des traces d’ions primaires dans les réponses biologiques. Les simulations réalisées avec le code de transport de particules FLUKA ont révélé que la dose due aux produits de fragmentation, autres que les électrons, est inférieure à 1 % de la dose absorbée dans les cultures cellulaires exposées à des ions lourds. De plus, la dose radiale des ions lourds secondaires est limitée à ~10-20 µm autour de l’ion primaire. Ainsi, ces derniers sont peu susceptibles de contribuer de manière significative à la réponse biologique observée dans des cellules non ciblées par des ions lourds primaires / Widespread evidence indicates that exposure of cell cultures to α particles results in significant biological changes in both the irradiated and non-irradiated bystander cells in the population. The induction of non-targeted biological responses in cell cultures exposed to low fluences of high charge (Z) and high energy (E) particles is relevant to estimates of the health risks of space radiation and to radiotherapy. Here, we investigated the mechanisms underlying the induction of stressful effects in confluent normal human fibroblast cultures exposed to low fluences of 1000 MeV/u iron ions (linear energy transfer (LET) ~151 keV/µm), 600 MeV/u silicon ions (LET ~50 keV/µm) or 290 MeV/u carbon ions (LET ~13 keV/µm). We compared the results with those obtained in cell cultures exposed, in parallel, to low fluences of 0.92 MeV/u α particles (LET ~109 keV/µm).Induction of DNA damage, changes in gene expression, protein carbonylation and lipid peroxidation during 24 h after exposure of confluent cultures to mean doses as low as 0.2 cGy of iron or silicon ions strongly supported the propagation of stressful effects from irradiated to bystander cells. At a mean dose of 0.2 cGy, only ~1 and 3 % of the cells would be targeted through the nucleus by an iron or silicon ion, respectively. Within 24 h post-irradiation, immunoblot analyses revealed significant increases in the levels of phospho-TP53 (serine 15), p21Waf1 (also known as CDKN1A), HDM2, phospho-ERK1/2, protein carbonylation and lipid peroxidation. The magnitude of the responses suggested participation of non-targeted cells in the response. Furthermore, when the irradiated cell populations were subcultured in fresh medium shortly after irradiation, greater than expected increases in the levels of these markers were also observed during 24 h. Together, the results imply a rapidly propagated and persistent bystander effect. In situ analyses in confluent cultures showed 53BP1 foci formation, a marker of DNA damage, in more cells than expected based on the fraction of cells traversed through the nucleus by an iron or silicon ion. The effect was expressed as early as 15 min after exposure, peaked at 1 h and decreased by 24 h. A similar tendency occurred after exposure to a mean absorbed dose of 0.2 cGy of 3.7 MeV α particles, but not after 0.2 cGy of 290 MeV/u carbon ions.Analyses in dishes that incorporate a CR-39 solid state nuclear track detector bottom identified the cells irradiated with iron or silicon ions and further supported the participation of bystander cells in the stress response. Mechanistic studies indicated that gap junction intercellular communication, DNA repair, and oxidative metabolism participate in the propagation of the induced effects.We also considered the possible contribution of secondary particles produced along the primary particle tracks to the biological responses. Simulations with the FLUKA multi-particle transport code revealed that fragmentation products, other than electrons, in cells cultures exposed to HZE particles comprise <1 % of the absorbed dose. Further, the radial spread of dose due to secondary heavy ion fragments is confined to approximately 10-20 µm Thus, the latter are unlikely to significantly contribute to the stressful effects in cells not targeted by primary HZE particles.
|
24 |
Studies of Accelerator-Driven Systems for Transmutation of Nuclear Waste / Studier av acceleratordrivna system för transmutation av kärnavfallDahlfors, Marcus January 2006 (has links)
<p>Accelerator-driven systems for transmutation of nuclear waste have been suggested as a means for dealing with spent fuel components that pose potential radiological hazard for long periods of time. While not entirely removing the need for underground waste repositories, this nuclear waste incineration technology provides a viable method for reducing both waste volumes and storage times. Potentially, the time spans could be diminished from hundreds of thousand years to merely 1.000 years or even less. A central aspect for accelerator-driven systems design is the prediction of safety parameters and fuel economy. The simulations performed rely heavily on nuclear data and especially on the precision of the neutron cross section representations of essential nuclides over a wide energy range, from the thermal to the fast energy regime. In combination with a more demanding neutron flux distribution as compared with ordinary light-water reactors, the expanded nuclear data energy regime makes exploration of the cross section sensitivity for simulations of accelerator-driven systems a necessity. This fact was observed throughout the work and a significant portion of the study is devoted to investigations of nuclear data related effects. The computer code package EA-MC, based on 3-D Monte Carlo techniques, is the main computational tool employed for the analyses presented. Directly related to the development of the code is the extensive IAEA ADS Benchmark 3.2, and an account of the results of the benchmark exercises as implemented with EA-MC is given. CERN's Energy Amplifier prototype is studied from the perspectives of neutron source types, nuclear data sensitivity and transmutation. The commissioning of the n_TOF experiment, which is a neutron cross section measurement project at CERN, is also described.</p>
|
25 |
Studies of Accelerator-Driven Systems for Transmutation of Nuclear Waste / Studier av acceleratordrivna system för transmutation av kärnavfallDahlfors, Marcus January 2006 (has links)
Accelerator-driven systems for transmutation of nuclear waste have been suggested as a means for dealing with spent fuel components that pose potential radiological hazard for long periods of time. While not entirely removing the need for underground waste repositories, this nuclear waste incineration technology provides a viable method for reducing both waste volumes and storage times. Potentially, the time spans could be diminished from hundreds of thousand years to merely 1.000 years or even less. A central aspect for accelerator-driven systems design is the prediction of safety parameters and fuel economy. The simulations performed rely heavily on nuclear data and especially on the precision of the neutron cross section representations of essential nuclides over a wide energy range, from the thermal to the fast energy regime. In combination with a more demanding neutron flux distribution as compared with ordinary light-water reactors, the expanded nuclear data energy regime makes exploration of the cross section sensitivity for simulations of accelerator-driven systems a necessity. This fact was observed throughout the work and a significant portion of the study is devoted to investigations of nuclear data related effects. The computer code package EA-MC, based on 3-D Monte Carlo techniques, is the main computational tool employed for the analyses presented. Directly related to the development of the code is the extensive IAEA ADS Benchmark 3.2, and an account of the results of the benchmark exercises as implemented with EA-MC is given. CERN's Energy Amplifier prototype is studied from the perspectives of neutron source types, nuclear data sensitivity and transmutation. The commissioning of the n_TOF experiment, which is a neutron cross section measurement project at CERN, is also described.
|
Page generated in 0.0207 seconds