• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 7
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 41
  • 10
  • 10
  • 8
  • 8
  • 8
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Mechanism of N-Type Inactivation in Shaker Potassium Channels

Pandey, Roshan 08 1900 (has links)
Hyperexcitabilité est l'un des changements les plus importants observés dans de nombreuses maladies neuro-dégénératives telles que la sclérose latérale amyotrophique (SLA) et la maladie d'Alzheimer. De nombreuses recherches études se sont concentrées sur la réduction de l'hyperexcitabilité, soit en inactivant les canaux sodiques ce qui va réduire la génération de potentiels d'action, soit en prolongeant l'ouverture des canaux potassiques ce qui va qui ramener la membrane à son état de repos et réduire l’activité des neurones. Ainsi, pour cibler l'hyperexcitabilité, il faut tout d’abord comprendre les différents aspects de la fonction des canaux ioniques au niveau. Les objectifs des travaux présentés dans cette thèse consistent à déterminer le mécanisme d'inactivation dans les canaux potassiques Shaker. Les canaux Shaker Kv s'inactivent rapidement pour culminer le potentiel d'action et maintenir l'homéostasie des cellules excitables. L'inactivation de type N est causée par les 46 premiers acides aminés situés de l'extrémité N-terminale du canal, encore appelé, peptide d'inactivation (IP). De nombreuses études mutationnelles ont caractérisé l'inactivation de type N au niveau fonctionnel, cependant, la position de l'IP à l'état de repos et leur transition lors de l'inactivation est encore débattue. L'objectif de la première étude consiste à évaluer le mouvement des IP pendant leur inactivation à l'aide de la fluorométrie en voltage imposé. En insérant un acide aminé non naturel, la 3-[(6-acétyl-2-naphtalényl) amino]-L-alanine (Anap), qui est sensible aux changements d'environnement, nous avons identifié séparément les mouvements de la boule et de la chaîne. Nos données suggèrent que l'inactivation de type N se produit dans un mouvement biphasique en libérant d'abord le IP, ce qui va bloquer le pore du côté cytoplasmique. Pour affiner davantage la position de repos des IP, nous avons utilisé le transfert d'énergie de résonance à base de lanthanide et le métal de transition FRET. Nous proposons que le IP se situe dans la fenêtre formée par le canal et le domaine T1, interagissant avec les résidus acides-aminés du domaine T1. Dans notre deuxième étude, nous avons montré que le ralentissement de l'inactivation de type N observé dans la première étude est causée par une expression élevée des canaux Shaker. En effet, l'extrémité C-terminale du canal interagit avec les protéines d'échafaudage associées à la membrane pour la formation d'amas. Nous avons aussi montré qu'en tronquant les quatre derniers résidus C-terminaux impliqués dans la formation des amas, nous empêchons également le ralentissement de la cinétique d'inactivation dans les canaux Shaker. Nous avons également démontré que l'inactivation lente de type N n'est pas affectée par l'accumulation des cations potassiques [K+] externe ou toute diaphonie entre les sous-unités voisines. Cette étude élucide non seulement la cause du ralentissement de l'inactivation, mais montre également que les canaux modifient leur comportement en fonction des conditions d'expression. Les résultats trouvés au niveau moléculaire ne peuvent donc pas toujours être extrapolés au niveau cellulaire. / Hyperexcitability of neurons is a major symptom observed in many degenerative diseases such as ALS and Alzheimer’s disease. A lot of research is focused on reducing hyperexcitability, either by inactivating sodium channels that will reduce the generation of action potentials, or by prolonging the opening of potassium channels which will help to bring the membrane back to resting state and thus, reduce firing frequency of neurons. At the molecular level, it is important to understand different aspects of ion channel function to target hyperexcitability. The aim of this thesis was to investigate in two projects the inactivation mechanism in Shaker potassium channels. Shaker Kv channels inactivate rapidly to culminate the action potential and maintain the homeostasis of excitable cells. The so-called N-type inactivation is caused by the first 46 amino acids of the N-terminus of the channel, known as the inactivation peptide (IP). Numerous mutational studies have characterized N-type inactivation functionally, however, the position of the IP in the resting state and its transition during inactivation is still debated. The aim of the first project was to track the movement of IP during inactivation using voltage clamp fluorometry. By inserting an unnatural amino acid, 3-[(6-acetyl-2-naphthalenyl) amino]-L-alanine (Anap), which is sensitive to changes in environment, we identified the movements of ball and chain separately. Our data suggests that N-type inactivation occurs in a biphasic movement by first releasing the IP, which then blocks the pore from the cytoplasmic side. To further narrow down the resting position of the inactivation peptide, we used Lanthanide-based Resonance Energy transfer and transition metal FRET. We propose that the inactivation peptide is located in the window formed by the channel and the T1 domain, interacting with the acidic residues of the T1 domain. In a follow-up study, we explored the reason underlying slow inactivation kinetics observed during the study of N-type inactivation in the first project. High expression of Shaker channels results in slowing of the N-type inactivation. The C-terminus of the channel interacts with membrane associated scaffold proteins for cluster formation. In this study, we have shown that by truncating the last four C-terminal residues involved in cluster formation, and hence preventing channel clustering, we also prevent slowing of the inactivation kinetics in Shaker channels. We also showed that slow N-type inactivation is not affected by accumulation of external [K+] or any crosstalk between the neighboring subunits. The second project not only elucidates the cause of the inactivation slow-down but illustrates that the channels alter their behavior dependent on the expression conditions. Results found on the molecular level can thus not always be extrapolated to the cellular level.

Page generated in 0.0236 seconds