21 |
Effects of calcium on conformation and stability of porcine pancreatic phospholipase Aâ†2English, William R. January 1997 (has links)
No description available.
|
22 |
The expression and secretion of hPDI in the yeast Saccharomyces cerevisiae for site directed mutagenesis studiesMhaiskar, Vijay January 1994 (has links)
No description available.
|
23 |
Pathways facilitating enterotoxin biogenesis in Vibro choleraeYu, Jan January 1994 (has links)
No description available.
|
24 |
The characterisation of an endoplasmic reticulum luminal peptidyl prolyl cis-trans isomeraseBose, Suchira January 1994 (has links)
No description available.
|
25 |
Refolding studies on 2-oxoacid dehydrogenase multienzyme complexesBeaumont, Ellen Sarah January 1996 (has links)
No description available.
|
26 |
Microcalorimetry of cyclodextrin interactions with amino acids and proteinsLovatt, Michelle January 1997 (has links)
No description available.
|
27 |
Three dimensional structures of chaperonin complexes by electron microscopy and image processingRoseman, Alan Michael January 1997 (has links)
No description available.
|
28 |
Rational design of organophosphorus hydrolase for the degradation and detection of neurotoxic pesticides and chemical warfare agentsReeves, Tony Elvern 17 September 2007 (has links)
It is critical to consider the balance between the catalytic capabilities of an enzyme and the inherent structural stability of the protein when developing enzymes for specific applications. Rational site directed mutagenesis has been used to explore the role of residues 254 and 257 in the global stability and catalytic specificities of organophosphorus hydrolase (OPH, EC 3.1.8.1). Substitution of residues H254 and H257, which are located near the active site, had a marked effect on both the global stability and substrate specificity of the enzyme. For example, the for the double mutation CoTGÃÂ2+ H254R H257L (RL) enzyme variant was 19.6 kcal/mol, 5.7 kcal/mol less than that of the wild type enzyme. At the same time, the altered enzyme was catalytically more effective against VX and VR (Russian VX), as compared to the wild type enzyme. Limited proteolysis verified the importance of residues 254 and 257 for functional stability, evidenced by enhanced resistance to irreversible unfolding associated with thermal denaturation. It has been possible to construct third generation OPH variants, which are more stable than the wild type enzyme, with a 10 ðC increase in the apparent melting temperature (TM app), yet retained desirable catalytic properties. It appeared that aromatic stacking and cation-àinteractions involving near active site residues not only affected activity but significantly contributed to the chemical and thermal stability of OPH. Rational design was used to develop an enzyme with an optimized orientation on a catalytically active biosensor surface. In these studies, lysine side chains located on the surface of OPH were used to create attachment sites to a surface plasmon resonance sensor resulting in an ensemble of enzyme orientations. Some of these orientations could be functionally restrictive if the active site is oriented toward the sensor surface. Substitution of a lysine near the active site resulted in 20% more activity with 53% less enzyme immobilized, thus increasing the specific activity of the decorated surface 2.5 fold.
|
29 |
Solution state characterization of the E. coli inner membrane protein glycerol facilitatorGalka, Jamie J. 14 July 2008 (has links)
The Major Intrinsic Proteins are represented in all forms of life; plants, animals, bacteria and recently archaebacteria have all been shown to express at least one member of this superfamily of integral membrane proteins. We have overexpressed the E. coli aquaglyceroporin, glycerol facilitator (GlpF), to use as a model for studying membrane protein structure, folding and stability. Understanding membrane protein folding, stability, and dynamics is required for a molecular explanation of membrane protein function and for the development of interventions for the hundreds of membrane protein folding diseases. X-ray analysis of GlpF crystals shows that the protein exits as a tetramer in the crystallized state [1]. However, preparations of stable aqueous detergent solutions of GlpF in its native oligomeric state have been difficult to make; the protein readily unfolds and forms non-specific aggregates in many detergents. Here, I report the study of the structure and stability of the glycerol facilitator in several detergent solutions by blue native and sodium dodecyl sulphate polyacrylamide gel electrophoresis, circular dichroism, and fluorescence. For the first time, stable protein tetramers were prepared in two different detergent solutions (dodecyl maltoside (DDM) and lyso-myristoyl phosphatidylcholine (LMPC)) at neutral pH. Thermal unfolding experiments show that the protein is slightly more stable in LMPC than in DDM and that the thermal stability of the helical core at 95oC is slightly greater in the former detergent. In addition, tertiary structure unfolds before quaternary and secondary structures in LMPC whereas unfolding is more cooperative in DDM. The high stability of the protein is also evident from the unfolding half-life of 8 days in 8 M urea suggesting that hydrophobic interactions contribute to the stability. The GlpF tetramers are less resistant to acidic conditions; LMPC-solubilized GlpF shows loss of tertiary and quaternary structure by pH 6, while in DDM the tertiary structure is lost by pH 5, however the tetramer remains mostly intact at pH 4. The implications of thermal and chemical stress on the stability of the detergent-solubilized protein and its in vivo folding are discussed. / October 2008
|
30 |
Rational design of organophosphorus hydrolase for the degradation and detection of neurotoxic pesticides and chemical warfare agentsReeves, Tony Elvern 17 September 2007 (has links)
It is critical to consider the balance between the catalytic capabilities of an enzyme and the inherent structural stability of the protein when developing enzymes for specific applications. Rational site directed mutagenesis has been used to explore the role of residues 254 and 257 in the global stability and catalytic specificities of organophosphorus hydrolase (OPH, EC 3.1.8.1). Substitution of residues H254 and H257, which are located near the active site, had a marked effect on both the global stability and substrate specificity of the enzyme. For example, the for the double mutation CoTGÃÂ2+ H254R H257L (RL) enzyme variant was 19.6 kcal/mol, 5.7 kcal/mol less than that of the wild type enzyme. At the same time, the altered enzyme was catalytically more effective against VX and VR (Russian VX), as compared to the wild type enzyme. Limited proteolysis verified the importance of residues 254 and 257 for functional stability, evidenced by enhanced resistance to irreversible unfolding associated with thermal denaturation. It has been possible to construct third generation OPH variants, which are more stable than the wild type enzyme, with a 10 ðC increase in the apparent melting temperature (TM app), yet retained desirable catalytic properties. It appeared that aromatic stacking and cation-àinteractions involving near active site residues not only affected activity but significantly contributed to the chemical and thermal stability of OPH. Rational design was used to develop an enzyme with an optimized orientation on a catalytically active biosensor surface. In these studies, lysine side chains located on the surface of OPH were used to create attachment sites to a surface plasmon resonance sensor resulting in an ensemble of enzyme orientations. Some of these orientations could be functionally restrictive if the active site is oriented toward the sensor surface. Substitution of a lysine near the active site resulted in 20% more activity with 53% less enzyme immobilized, thus increasing the specific activity of the decorated surface 2.5 fold.
|
Page generated in 0.0172 seconds