1 |
Desenvolvimento de um dispositivo fotoeletroqu?mico a base de g-C3N4, Cu2O e CuO para clivagem da ?gua em H2 e O2Almeida, Monique Rocha 22 August 2016 (has links)
Submitted by Jos? Henrique Henrique (jose.neves@ufvjm.edu.br) on 2017-03-24T21:23:22Z
No. of bitstreams: 2
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
monique_rocha_almeida.pdf: 4635045 bytes, checksum: 2d203824a390ae82a5006e68b621c98b (MD5) / Approved for entry into archive by Rodrigo Martins Cruz (rodrigo.cruz@ufvjm.edu.br) on 2017-04-20T19:40:16Z (GMT) No. of bitstreams: 2
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
monique_rocha_almeida.pdf: 4635045 bytes, checksum: 2d203824a390ae82a5006e68b621c98b (MD5) / Made available in DSpace on 2017-04-20T19:40:16Z (GMT). No. of bitstreams: 2
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
monique_rocha_almeida.pdf: 4635045 bytes, checksum: 2d203824a390ae82a5006e68b621c98b (MD5)
Previous issue date: 2016 / Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM) / A convers?o de energia solar em energia qu?mica usando c?lulas fotoeletroqu?micas ? uma
estrat?gia interessante para armazenar energia. C?lulas fotoeletroqu?micas s?o dispositivos
constitu?dos de fotoeletrodos semicondutores que absorvem luz com energia maior ou igual a
energia de bandgap do semicondutor e geram cargas reativas (el?trons e buracos) na
superf?cie dos fotoeletrodos capazes de promover a redu??o e oxida??o da ?gua em H2 e O2,
respectivamente. Nesta disserta??o, quatro fotoeletrodos de g-C3N4, g-C3N4/Cu1%, g-
C3N4/Cu5% e Cu2O/CuO foram preparados com o objetivo de desenvolver uma c?lula
fotoeletroqu?mica para clivagem da ?gua em H2 e O2 de forma espont?nea. As medidas de
difratometria de raios X confirmaram a presen?a das fases g-C3N4 e Cu2O/CuO nos
fotoeletrodos. As imagens de MEV mostraram que os materiais ? base de g-C3N4 possuem
morfologia do tipo esponja, enquanto a heterojun??o Cu2O/CuO ? formada por nanopart?culas
de forma indefinida. Medidas de reflect?ncia difusa mostraram que o acoplamento do g-C3N4
e Cu2O/CuO resulta em uma melhora significativa na absor??o ?ptica dos fotoeletrodos.
Medidas de ?rea espec?fica indicaram que os nanomateriais ? base de g-C3N4 tem alta ?rea
superficial (?100 m2 g?1), enquanto a ?rea espec?fica da heterojun??o Cu2O/CuO foi de
17 m2 g?1. Os resultados de redu??o ? temperatura programada evidenciaram a forma??o das
heterojun??es. Os testes fotoeletroqu?micos de produ??o de O2 a partir da ?gua usando luz
vis?vel indicaram que em potenciais an?dicos, apenas o fotoanodo de g-C3N4 foi est?vel
apresentando uma densidade de fotocorrente de 16 ?A cm?2 que corresponde a uma efici?ncia
de convers?o de luz de 0,014%. Em potenciais cat?dicos, a maior densidade de fotocorrente
(60 ?A cm?2) foi obtida para o fotoeletrodo Cu2O/CuO. A efici?ncia de convers?o de luz do
fotocatodo de Cu2O/CuO foi de 0,029%. Com base nos dados obtidos, uma c?lula
fotoeletroqu?mica p-n foi constru?da usando a heterojun??o Cu2O/CuO como fotocatodo e g-
C3N4 como fotoanodo. Esta c?lula gerou uma densidade de fotocorrente in operando de
0,62 ?A cm?2 e uma fotovoltagem de 0,62 V. A efici?ncia de convers?o solar da fotoc?lula foi
de 0,004% sob irradia??o de luz vis?vel. Apesar da baixa efici?ncia obtida, espera-se que esta
disserta??o possa servir de inspira??o para o desenvolvimento de novos dispositivos
fotoeletroqu?micos para clivagem da ?gua em H2 e O2, usando luz vis?vel. / Disserta??o (Mestrado) ? Programa de P?s-Gradua??o em Qu?mica, Universidade Federal dos Vales do Jequitinhonha e Mucuri, 2016. / The conversion of solar energy into chemical energy using photoelectrochemical cells is an
interesting strategy to store energy. Photoelectrochemical cells are made up of semiconductor
photoelectrodes that absorb light with energy equal or higher than the bandgap energy of the
semiconductor to generate reactive charges (electrons and holes) on the surface of the
photoelectrodes, which can promote the oxidation and reduction reactions of water to form H2
and O2, respectively. In this dissertation, four photoelectrodes of g-C3N4, g-C3N4/Cu1%, g-
C3N4/Cu5%, and Cu2O/CuO were prepared in order to develop a photoelectrochemical cell
for spontaneous water splitting into H2 and O2. The X-ray diffraction patterns confirmed the
presence of g-C3N4 and Cu2O/CuO phases in the photoelectrodes. The SEM images showed
that the materials based on g-C3N4 have sponge-like morphology, whereas the Cu2O/CuO
heterojunction is formed by nanoparticles with undefined shapes. Diffuse reflectance
measurements showed that coupling g-C3N4 and Cu2O/CuO results in a significant
improvement in optical absorption of the photoelectrodes. Surface area measurements
indicated that the nanomaterials based on g-C3N4 have high surface areas (?100 m2 g?1), while
the specific area for the Cu2O/CuO heterojunction was 17 m2 g?1. The temperature
programmed reduction results evidenced the formation of the heterojunctions. The
photoelectrochemical assays of O2 production from water using visible light indicated that at
anodic potentials, only the photoanode g-C3N4 was stable showing a photocurrent density of
16 ?A cm?2, which corresponds to a light conversion efficiency of 0.014%. At cathodic
potentials, the higher photocurrent density (60 ?A cm?2) was obtained for the Cu2O/CuO
photoelectrode. The light conversion efficiency of the Cu2O/CuO photocathode was 0.029%.
Based on the obtained data, a p-n photoelectrochemical cell was constructed using the
Cu2O/CuO heterojunction as the photocathode and g-C3N4 as the photoanode. This photocell
generated a photocurrent density in operando of 0.62 ?A cm?2 and photovoltage of 0.62 V.
The light conversion efficiency of the photocell was 0.004% under visible light irradiation.
Despite the low efficiency obtained for the p-n photocell, it is expected that this dissertation
may serve of inspiration for the development of new photoelectrochemical devices for water
splitting into H2 and O2 using visible light.
|
2 |
Modulação das propriedades eletrônicas de óxidos metálicos para aplicação em células fotoeletroquímicasSilva Junior, Enesio Marinho da January 2016 (has links)
Orientador: Prof. Dr. Cedric Rocha Leão / Dissertação (mestrado) - Universidade Federal do ABC, Programa de Pós-Graduação em Nanociências e Materiais Avançados, 2016. / Células fotoeletroquímicas (PECs) são dispositivos optoeletrônicos que convertem a energia solar em energia química através da fotoeletrólise da água. O vanadato de bismuto (BiVO4) é um semicondutor com propriedades fotocatalíticas promissoras para aplicação em PECs, apresentando uma das maiores eficiências teóricas na transformação da energia luminosa em energia química. Contudo, o BiVO4 pristino apresenta alguns fatores limitantes para sua eficiência, tais como baixa condutividade intrínseca e a curta duração das fotoexcitações. Resultados experimentais indicam que a incorporação de Mo ou W ao BiVO4 aumenta a geração de fotocorrente. Porém, esta incorporação apresenta resultados ótimos para as seguintes
concentração dos dopantes: 10 at.% (percentual atômico) para o Mo e 8 at.% para o W. No presente trabalho, busca-se investigar por cálculos ab initio baseados na teoria do funcional da densidade como a variação na concentracão de Mo em matriz de BiVO4 altera as propriedades eletrônicas do semicondutor. Para tanto, a adição destes metais de transição foi abordada de dois modos: dopagem por Mo e formação de ligas quaternárias por Mo ou W. Os resultados de energia de formação de defeitos intrínsecos indicam que a síntese do BiVO4 em atmosfera pobre em oxigênio maximiza a formação de defeitos doadores rasos, otimizando a geração de fotocorrente no dispositivo. Os defeitos substitucionais de Mo em sítio de V são doadores rasos e apresentaram baixa energia de formação, contudo o aumento na concentração destes átomos promove o surgimento de níveis profundos que atuam como armadilhas de portadores de carga. As análises de densidade de estados projetada mostraram que os estados eletrônicos do Mo nas ligas quaternárias hibridizam-se sobretudo na banda de condução. Foram verificadas alterações nas massas efetivas de elétrons e buracos, bem como no gap de energia devido à adição dos elementos de liga. Potencialmente, a incorporação destes átomos pode propiciar a formação de ligas quaternárias com alteração também no alinhamento da banda de condução com o potencial de redução da água e no acoplamento
elétron-fônon. / Photoelectrochemical cells (PECs) are optoelectronic devices that convert light energy into chemical energy through water splitting process. Bismuth vanadate (BiVO4) presents promissing photocatalytic properties for application in PECs. However, there are some limitant factors for the pristine BiVO4, such poor charge transport and excessive electron¿hole recombination. Previous experimental results show that the addition of Mo or W into BiVO4 increases the photocurrent generation. Nevertheless, these additions promote optimal photocurrent generation for 10 at.% (atomic percent) of Mo. and 8 at.% of W. In the present work, we propose to investigate using ab initio calculations based on density functional theory how the increment of Mo concentration into the BiVO4 can change its electronic properties. We approach this issue in two ways: doping using Mo and alloying by Mo or W. Results of thermodynamic studies to determine theoretically the conditions for nucleation and growth of BiVO4 pristine and doped suggest that the synthesis of BiVO4 in an oxygen poor atmosphere enhances the concentration of shallow donors, optimizing the photocurrent generation by the photoanode. Substitutional defects containing Mo into the V site are shallow donors that present low formation energy, however the enhancement in the alloy element concentration promotes the arising of deep levels which acts as trap for charge carriers. Analysis of projected density of states shows that the electronic states of Mo in quaternary alloys hybridize mainly in the conduction band. Our results indicate that this alloying changes the effective masses of electrons and holes, as well as the bandgap. Potentially, the alloying using Mo or
W can change other properties, such as band edge alignment and electron-phonon coupling which will affect the device performance.
|
Page generated in 0.0129 seconds