1 |
Studies in the photoelectrochemistry of bismuth vanadate using scanning electrochemical microscopyPark, Hyun Seo 04 March 2014 (has links)
Photoelectrochemical studies were performed on bismuth vanadate (BiVO₄) to understand chemical and physical properties of the photocatalysts, and to improve the photoactivity for water oxidation. Scanning electrochemical microscopy (SECM) was used to screen various dopants for BiVO₄, to calculate the photoconversion efficiencies to chemical energy at BiVO₄ electrodes, and to study the water oxidation intermediate radicals at the surface of BiVO₄. Tungsten and molybdenum doped BiVO₄ (W/Mo-BiVO₄) shows a photocurrent for water oxidation that is more than 10 times higher than undoped BiVO₄. Photoelectrochemical measurements and material analysis were done to discuss the factors that affect performance of BiVO₄. Finite elements analysis was also performed to explain the electron-hole transport and electrochemical reactions at W/Mo-BiVO₄ electrodes in solutions. Addition of conductive or electron accepting materials, e.g. reduced graphene oxide, into BiVO₄ was tried to study the electron-hole transport phenomena in the metal oxide electrodes. Surface adsorbed radicals produced during the water oxidation at W/Mo-BiVO₄ were interrogated by using SECM that the surface coverage and decay kinetics of adsorbed hydroxyl radicals at W/Mo-BiVO₄ were measured. The quantum efficiencies of the injected photon conversion to chemical energy were obtained from the photoelectrochemical measurements by using SECM. SECM techniques and finite elements analysis were also used to measure the faradaic efficiency of water oxidation at W/Mo-BiVO₄ under irradiation. Finally, unbiased water splitting to generate hydrogen and oxygen from water splitting only using photon energy at W/Mo-BiVO₄ electrodes was demonstrated in a dual n-type semiconductor or Z-scheme device. / text
|
2 |
First principles study of point-like defects and impurities in silicon, carbon, and oxide materialsKweon, Kyoung Eun, 1981- 10 March 2014 (has links)
Since materials properties are determined by the interactions between the constituent atoms, an accurate description of the inter-atomic interactions is crucial to characterize and control material properties. Particularly, a quantitative understanding of the formation and nature of defects and impurities becomes increasingly important in the era of nanotechnology, as the imperfections largely influence many properties of nanoscale materials. Indeed, due to its technological importance and scientific interest, there have been significant efforts to better understand their behavior in semiconductors and oxides, and their interfaces, yet many fundamental aspects are still ambiguous due largely to the difficulty of direct characterization. Hence, our study has focused on developing a better understanding of atomic-scale defects and impurities using first principles quantum mechanical calculations. In addition, based on the improved understanding, we have attempted to address some engineering problems encountered in the current technology.
The first part of this thesis focuses on mechanisms underlying the transient enhanced diffusion of arsenic (As) during post-implantation annealing by examining the interaction of As with vacancies in silicon. In the second part, we address some fundamental features related to plasma-assisted nitridation of silicon dioxide; this study shows that oxygen vacancy related defects play an important role in (experimentally observed) peculiar nitridation at the Si/SiO2 interface during post O2 annealing. In the third part, we examine the interaction between vacancies and dopants in sp2–bonded carbon such as graphene and nanotube, specifically the formation and dynamics of boron-vacancy complexes and their influence on the electrical properties of host materials. In the fourth part, we study the interfacial interaction between amorphous silica (a-SiO2) and graphene in the presence of surface defects in a-SiO2; this study shows possible modifications in the electronic structure of graphene upon the surface defect assisted chemical binding onto the a-SiO2 surface. In the last part, we examine the structural and electronic properties of bismuth vanadate (BiVO4) which is a promising photocatalyst for water splitting to produce hydrogen; this study successfully explains the underlying mechanism of the interesting photocatalytic performance of BiVO4 that has been experimentally found to strongly depend on structural phase and doping. / text
|
3 |
Photocatalyse de décomposition de l'eau : conception et construction d'une cellule photoelectrocatalyique pour la photodissociation de l'eau / Water splitting photoelectrocatalysis : the conception and construction of a photoelectrocatalytic water splitting cellHilliard, Samantha 23 February 2016 (has links)
La photoelectrocatalyse de l'eau par rayonnement solaire est une solution communément proposée pour la production propre d'hydrogène. En termes de rendement solaire-à-hydrogène, un tandem dual photosystème est accepté comme la configuration plus efficace concernant les cellules photoelectrocatalytique pour la dissociation de l'eau. Ce travail s'intéresse au trioxyde de tungstène (WO3) et au bismuth vanadate (BiVO4) sous la forme de photoanodes type n en couches minces pour la complétion d'oxydation de l'eau dans la demi-réaction pour la dissociation complète de l'eau dans une cellule tandem dual photosystème photoelectrocatalytique. Ces couches minces sont fabriquées par des méthodes robustes, économiques, et extensibles de sol-gel dip coating, et caractérisées par différentes techniques pour vérifier leurs caractéristiques physiques et leur performance photoelectrochimique. WO3 et BiVO4 sont optimises par nanostructuration, modification des couches interfaciales, et addition des co-catalyseurs de surface pour améliorer les performances et la stabilité, respectivement dans des conditions acides et neutres. Ces matériaux sont couples avec une photocathode de type p en oxyde de cuivre (II) pour compléter la réaction de dissociation de l'eau. La cellule photoelectrocatalytique ainsi construite est inspirée par la littérature concernant les systèmes innovateurs de tandem dual photosystèmes. Ce travail aboutit à l'une des seules cellules de dissociation de l'eau par photoelectrocatalyse à base des oxydes de métaux, fabriquée via des techniques faciles et économiques. L'efficacité de la production solaire-à-hydrogène est de 0.01%, et applied-bias-to-photon efficacité de 0.06%. / Solar water splitting by photoelectrocatalysis is a proposed long term solution for the production of renewable hydrogen. A wired dual photosystem photoelectrocatalytic cell is thermodynamically considered to possess the highest attainable solar-to-hydrogen efficiency. To realize a photoelectrocatalytic water splitting cell for practical application, facile fabrication methods and abundant low cost materials are essential. This research investigates tungsten trioxide (WO3) and bismuth vanadate (BiVO4) as thin film n-photoanodes to complete the oxygen evolution half reaction for water splitting application in a tandem dual photosystem photoeletrocatalyic water splitting cell. These thin films are fabricated by low cost, robust, scalable, sol-gel dip coating methods and characterized by several techniques to verify the physical characteristics and photochemical performance. WO3 and BiVO4 are optimized by nanostructuration, interfacial surface modification, and addition of surface co-catalysts to increase performance and stability in acidic and neutral conditions, respectively. These materials are coupled with a copper (II) oxide p-photocathode to drive the hydrogen evolution reaction in a photoelectrocatalyic cell to complete the water splitting reaction. The photoelectrocatalytic cell constructed is inspired by previous literature reports encompassing an innovative tandem dual photosystem approach. As a result, this research reports one of the only entirely metal oxide based photoelectrocatalytic water splitting cells, fabricated by inexpensive, unexcessive techniques, resulting in a solar-to-hydrogen efficiency of 0.01% and an applied bias to photon efficiency of 0.06%.
|
4 |
Towards Photocatalytic Overall Water Splitting via Small Organic ShuttlesSommers, Jacob January 2016 (has links)
This thesis studies the development of a new method for photochemical overall water splitting using a small organic shuttle.
In Section 2, BiVO4, was studied to determine the CO2 reduction mechanism and how catalytic activity decays. BiVO4 catalysts were capable of producing a maximum of 200 μmol of methanol per gram of catalyst from CO2 in basic media, and later decomposed by BiVO4. The decay of BiVO4¬ was studied by x-ray diffraction and scanning electron microscopy, demonstrating reversible decomposition of BiVO4. BiVO4 is etched, leeching vanadium into solution, while nanoparticles of bismuth oxide are deposited on the surface of BiVO4.
In Section 3, ferrocyanide salts, an aqueous, cheap, and abundant photocatalyst was used for the first time to dehydrogenate aqueous formaldehyde selectively into formate and hydrogen. The catalyst is capable of record turnovers and turnover frequencies for formaldehyde dehydrogenation catalysts. A preliminary mechanism was proposed from experimental and computational data.
|
5 |
Synthesis and Characterization of BiVO₄-based photocatalysts / BiVO4系の光触媒の合成と特性評価MENG, SOPHEAK 24 September 2021 (has links)
京都大学 / 新制・課程博士 / 博士(エネルギー科学) / 甲第23536号 / エネ博第427号 / 新制||エネ||81(附属図書館) / 京都大学大学院エネルギー科学研究科エネルギー社会・環境科学専攻 / (主査)教授 石原 慶一, 教授 佐川 尚, 准教授 奥村 英之 / 学位規則第4条第1項該当 / Doctor of Energy Science / Kyoto University / DFAM
|
6 |
Modulação das propriedades eletrônicas de óxidos metálicos para aplicação em células fotoeletroquímicasSilva Junior, Enesio Marinho da January 2016 (has links)
Orientador: Prof. Dr. Cedric Rocha Leão / Dissertação (mestrado) - Universidade Federal do ABC, Programa de Pós-Graduação em Nanociências e Materiais Avançados, 2016. / Células fotoeletroquímicas (PECs) são dispositivos optoeletrônicos que convertem a energia solar em energia química através da fotoeletrólise da água. O vanadato de bismuto (BiVO4) é um semicondutor com propriedades fotocatalíticas promissoras para aplicação em PECs, apresentando uma das maiores eficiências teóricas na transformação da energia luminosa em energia química. Contudo, o BiVO4 pristino apresenta alguns fatores limitantes para sua eficiência, tais como baixa condutividade intrínseca e a curta duração das fotoexcitações. Resultados experimentais indicam que a incorporação de Mo ou W ao BiVO4 aumenta a geração de fotocorrente. Porém, esta incorporação apresenta resultados ótimos para as seguintes
concentração dos dopantes: 10 at.% (percentual atômico) para o Mo e 8 at.% para o W. No presente trabalho, busca-se investigar por cálculos ab initio baseados na teoria do funcional da densidade como a variação na concentracão de Mo em matriz de BiVO4 altera as propriedades eletrônicas do semicondutor. Para tanto, a adição destes metais de transição foi abordada de dois modos: dopagem por Mo e formação de ligas quaternárias por Mo ou W. Os resultados de energia de formação de defeitos intrínsecos indicam que a síntese do BiVO4 em atmosfera pobre em oxigênio maximiza a formação de defeitos doadores rasos, otimizando a geração de fotocorrente no dispositivo. Os defeitos substitucionais de Mo em sítio de V são doadores rasos e apresentaram baixa energia de formação, contudo o aumento na concentração destes átomos promove o surgimento de níveis profundos que atuam como armadilhas de portadores de carga. As análises de densidade de estados projetada mostraram que os estados eletrônicos do Mo nas ligas quaternárias hibridizam-se sobretudo na banda de condução. Foram verificadas alterações nas massas efetivas de elétrons e buracos, bem como no gap de energia devido à adição dos elementos de liga. Potencialmente, a incorporação destes átomos pode propiciar a formação de ligas quaternárias com alteração também no alinhamento da banda de condução com o potencial de redução da água e no acoplamento
elétron-fônon. / Photoelectrochemical cells (PECs) are optoelectronic devices that convert light energy into chemical energy through water splitting process. Bismuth vanadate (BiVO4) presents promissing photocatalytic properties for application in PECs. However, there are some limitant factors for the pristine BiVO4, such poor charge transport and excessive electron¿hole recombination. Previous experimental results show that the addition of Mo or W into BiVO4 increases the photocurrent generation. Nevertheless, these additions promote optimal photocurrent generation for 10 at.% (atomic percent) of Mo. and 8 at.% of W. In the present work, we propose to investigate using ab initio calculations based on density functional theory how the increment of Mo concentration into the BiVO4 can change its electronic properties. We approach this issue in two ways: doping using Mo and alloying by Mo or W. Results of thermodynamic studies to determine theoretically the conditions for nucleation and growth of BiVO4 pristine and doped suggest that the synthesis of BiVO4 in an oxygen poor atmosphere enhances the concentration of shallow donors, optimizing the photocurrent generation by the photoanode. Substitutional defects containing Mo into the V site are shallow donors that present low formation energy, however the enhancement in the alloy element concentration promotes the arising of deep levels which acts as trap for charge carriers. Analysis of projected density of states shows that the electronic states of Mo in quaternary alloys hybridize mainly in the conduction band. Our results indicate that this alloying changes the effective masses of electrons and holes, as well as the bandgap. Potentially, the alloying using Mo or
W can change other properties, such as band edge alignment and electron-phonon coupling which will affect the device performance.
|
7 |
Síntese, caracterização e estudo das propriedades fotoeletrocatalíticas dos fotoanodos BiVO4 e BiVO4/FeOOH / SYNTHESIS, CHARACTERIZATION AND STUDY OF PHOTOELECTROCATALYTIC PROPERTIES OF PHOTOANODES BiVO4 AND BiVO4/FeOOHAraújo, Moisés Albuquerque de 27 November 2015 (has links)
Submitted by Luciana Sebin (lusebin@ufscar.br) on 2016-10-10T18:12:48Z
No. of bitstreams: 1
DissMAA.pdf: 3706175 bytes, checksum: 849f2e6fb88e0e236a824a72bfb02512 (MD5) / Approved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2016-10-13T20:12:47Z (GMT) No. of bitstreams: 1
DissMAA.pdf: 3706175 bytes, checksum: 849f2e6fb88e0e236a824a72bfb02512 (MD5) / Approved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2016-10-13T20:12:57Z (GMT) No. of bitstreams: 1
DissMAA.pdf: 3706175 bytes, checksum: 849f2e6fb88e0e236a824a72bfb02512 (MD5) / Made available in DSpace on 2016-10-13T20:13:09Z (GMT). No. of bitstreams: 1
DissMAA.pdf: 3706175 bytes, checksum: 849f2e6fb88e0e236a824a72bfb02512 (MD5)
Previous issue date: 2015-11-27 / Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) / Among the variety of semiconductor materials investigated to apply in electrochemical cells bismuth vanadate (BiVO4) is one of the candidate which would be used as photoanode. Thus, this study aimed to synthesize thin films of BiVO4 and their modification with a thin layer of iron (III) oxyhydroxide (FeOOH) by photodeposition and study their photoelectrocatalytic properties. The optimization of BiVO4 synthesis condition was assessed by a factorial design 23 and an analysis of univariate type. The
parameters studied were annealing temperature (500 and 600 °C), calcinations time (30, 60, 150 and 270 min.), solvent type employed for dissolving the BiVO4 precursor reagents (poly ethylene glycol 300-PEG 300, PEG 400, ethylene glycol-EG, mixture 1:1 by volume of PEG 300 and EG), deposition
method of BiVO4 films (dropping and spin coating) and method of drying layers (heating at 500 °C, heat gun and no drying). From the optimized condition BiVO4 film was prepared by dissolving bismuth (III) nitrate and ammonium metavanadate in a mixture of 1:1 by volume of EG and PEG 300, it was
deposited onto glass containing FTO by spin coating and then calcinated directly at 500 °C for 60 min. The photodeposition was carried out in the mixture FeSO4 and sodium citrate medium both 1 mmol L-1 and pH 4.7 by applying the open circuit potential for 5 min. and under light incidence. and then polarizing at 1.2 V for 1 min. BiVO4 and BiVO4/FeOOH films were characterized by XRD, SEM, EDS, UV-vis, voltammetry (cyclic and linear) and electrochemical impedance spectroscopy. The results reveled that photocurrent values increased 2.5 times at 0.71 V and the on set potential shifted to less positive value in the presence of FeOOH, also there was a considerable reduction of the charge
transfer resistance in the interface photoanode/solution. The bare BiVO4 films were photostable during the illumination time studied which was 4 h. However, the modified films did not show the same behavior, the photocurrent value decreased 29% after 4 h illuminated. The results in the sulphite presence showed that photocurrent value for bare BiVO4 and BiVO4/FeOOH were less than the maximum photocurrent value which would achieve for this materias. / Dentre os diversos materiais semicondutores estudados para aplicação em células fotoeletroquímicas encontra-se o vanadato de bismuto (BiVO4), o qual pode ser utilizado como fotoanodo. Deste modo, o presente trabalho teve como objetivo principal a síntese de filmes finos de BiVO4 e sua modificação com uma fina camada de oxihidróxido de ferro (III) (FeOOH) por
fotodeposição e avaliação das propriedades fotoeletrocatalíticas destes materiais. A otimização das condições de síntese do BiVO4 foi avaliada por um planejamento fatorial 23 e por uma análise do tipo univariada. Os parâmetros estudados foram temperatura de calcinação (500 e 600 °C), tempo de calcinação (30, 60, 150 e 270 min.), tipo de solvente empregado para dissolução dos reagentes precursores do BiVO4 (polietileno glicol 300-PEG 300, PEG 400, etileno glicol-EG, mistura 1:1 em volume de PEG 300 e EG), método de deposição dos filmes de BiVO4 (dropping e spin coating) e método de secagem
das camadas dos filmes (aquecimento a 500 °C, soprador térmico e sem secar). Nas condições otimizadas o filme de BiVO4 foi preparado pela dissolução de nitrato de bismuto (III) e metavanadato de amônio em uma mistura de 1:1 em volume de EG e PEG 300, depositado sobre vidro contendo FTO por spin coating e depois calcinado diretamente a 500 ºC por 60 min. A fotodeposição foi realizada em meio da mistura FeSO4 e citrato de sódio ambos a 1 mmol L-1 e pH 4,7, aplicando-se o potencial de circuito aberto por 5 min. e com incidência de luz, seguida de polarização em 1,2 V por 1 min. Os filmes de BiVO4 e BiVO4/FeOOH foram caracterizados por DRX, MEV, EDX, UV-vis, voltametria (cíclica e linear) e espectroscopia de impedância eletroquímica. Os resultados mostram que na presença do FeOOH houve aumento de 2,5 vezes nos valores de densidade fotocorrente em 0,71 V e o potencial de on set deslocou-se para valores menos positivos, bem como uma redução considerável na resistência de transferência de carga na interface fotoanodo/solução. Os filmes de BiVO4 puro apresentaram-se fotoestáveis durante o tempo de iluminação estudado, 4 h. No entanto, os filmes modificados não apresentaram o mesmo comportamento, houve um decréscimo de 29% no valor de densidade de fotocorrente após 4 h de iluminação. O estudo na presença do sulfito mostrou que os valores de fotocorrentes para o BiVO4 puro e o BiVO4/FeOOH estão abaixo do valor máximo que se poderia obter para estes materiais.
|
8 |
Inherently Asymmetric Photocatalytic MicroswimmersHeckel, Sandra 13 December 2021 (has links)
In this work, photocatalytic bismuth vanadate microparticles of different morphologies were investigated as artificial single.component microswimmers. In the first chapter, the motion mechanism as well as influence factors on the motion behavior such as solution pH and solution conductivity, hydrogen peroxide fuel concentration and decomposition kinetics and the surface charge of the particles were studied in detail. Furthermore, fluid flow profiles around the particles were determined.
In the following chapter, interactions between the microswimmers were studied and exploited to create active assemblies that can be used to integrate multiple functionalities in one assembly.
Eventually, alternative propulsion mechanisms besides hydrogen peroxide fuel decomposition were studied. The presented approaches include the catalysis of an organic oxidation and photoreduction of noble metals onto the particles, which proved to increase their catalytic activity and enabled propulsion of the modified microswimmers in pure water.:Acknowledgments III
List of Abbreviations V
1. Introduction 1
2. Fundamentals of Photocatalysis and Active Matter 5
2.1. Photocatalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.1. Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2. Processes in Semiconductor Photocatalysis . . . . . . . . . . . . . . . . 5
2.1.3. Properties of Bismuth Vanadate . . . . . . . . . . . . . . . . . . . . . . 10
2.1.4. Photocatalytic H2O2 decomposition . . . . . . . . . . . . . . . . . . . . 12
2.2. Active Matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.1. Motion at the Microscale . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.2. Mechanisms of Catalytic Active Motion . . . . . . . . . . . . . . . . . . 18
2.2.3. Light-Driven Active Motion . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.4. Origin of Asymmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3. Aim and Motivation 27
4. Results and Discussion 29
4.1. Microparticle Synthesis und Characterization . . . . . . . . . . . . . . . . . . . 29
4.1.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.1.2. Syntheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.1.3. Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.1.4. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2. Motion Studies and Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2.2. Characterization of Active Motion . . . . . . . . . . . . . . . . . . . . . 44
4.2.3. Influence of Experimental Conditions . . . . . . . . . . . . . . . . . . . . 54
4.2.4. Adjustment of Motion Mode by pH . . . . . . . . . . . . . . . . . . . . . 67
4.2.5. Flow Fields Around Single Crystalline Microparticles . . . . . . . . . . . 73
4.2.6. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.3. Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.3.2. Interactions Between BiVO4 Microswimmers . . . . . . . . . . . . . . . 83
4.3.3. Interactions between Spheroidal Microswimmers . . . . . . . . . . . . . 84
4.3.4. Surface Modification of Spheroidal Microswimmers . . . . . . . . . . . . 88
4.3.5. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.4. Towards Alternative Propulsion Reactions . . . . . . . . . . . . . . . . . . . . . 93
4.4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.4.2. Oxidation of Dibenzylamine . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.4.3. Photodeposition of Metals . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.4.4. Towards Propulsion in Pure Water . . . . . . . . . . . . . . . . . . . . . 98
4.4.5. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5. Summary and Final Remarks 103
6. Experimental Details 113
6.1. Syntheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.1.1. Microparticle Synthesis and Characterization . . . . . . . . . . . . . . . 113
6.1.2. Motion Studies and Mechanism . . . . . . . . . . . . . . . . . . . . . . . 114
6.1.3. Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.1.4. Towards Alternative Propulsion Reactions . . . . . . . . . . . . . . . . . 117
6.2. Apparatus and Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.2.1. Scanning Electron Microscopy (SEM) . . . . . . . . . . . . . . . . . . . 117
6.2.2. Transmission Electron microscopy (TEM) . . . . . . . . . . . . . . . . . 117
6.2.3. Nitrogen physisorption . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.2.4. Gas Chromatography (GC) . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.2.5. Powder X-ray Crystallography (XRD) . . . . . . . . . . . . . . . . . . . 118
6.2.6. Absorption Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.2.7. Fluorescence Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.2.8. Zeta Potential Measurements . . . . . . . . . . . . . . . . . . . . . . . . 119
6.2.9. Fluorescence Microscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
6.2.10. Light Microscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
A. Appendix 123
Bibliography 139
List of Publications 149
Erklärung 151
|
9 |
Heterostructure formation of BiVO4 with different Bi compounds : role of the heterojunction on photocatalytic properties / Obtenção de heteroestruturas de BiVO4 com diferentes compostos de bi : papel das heterojunções nas propriedades fotocatalíticasLopes, Osmando Ferreira 29 August 2016 (has links)
Submitted by Aelson Maciera (aelsoncm@terra.com.br) on 2017-04-25T17:57:49Z
No. of bitstreams: 1
TeseOFL.pdf: 5276658 bytes, checksum: fa1530974731a8e33b62043b4c524afb (MD5) / Approved for entry into archive by Ronildo Prado (ronisp@ufscar.br) on 2017-05-02T12:15:10Z (GMT) No. of bitstreams: 1
TeseOFL.pdf: 5276658 bytes, checksum: fa1530974731a8e33b62043b4c524afb (MD5) / Approved for entry into archive by Ronildo Prado (ronisp@ufscar.br) on 2017-05-02T12:15:19Z (GMT) No. of bitstreams: 1
TeseOFL.pdf: 5276658 bytes, checksum: fa1530974731a8e33b62043b4c524afb (MD5) / Made available in DSpace on 2017-05-02T12:42:14Z (GMT). No. of bitstreams: 1
TeseOFL.pdf: 5276658 bytes, checksum: fa1530974731a8e33b62043b4c524afb (MD5)
Previous issue date: 2016-08-29 / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / Semiconductors employed as photocatalysts that can be activated by
visible irradiation have attracted intense scientific interest due to their applications in
heterogeneous photocatalysis. BiVO4 is a semiconductor with band gap value of 2.4 eV;
however, this material exhibits poor photocatalytic activity mainly due to the rapid
recombination of electron/hole pair. An efficient strategy to overcome this challenge is
through the formation of type-II heterostructures. Based on this overview, this work
aimed at: (i) developing methods to obtain heterostructures composed of BiVO4 and
different bismuth compounds (t-BiVO4, Bi2O3 e Bi2O2CO3), (ii) to evaluate the effect of
heterojunction formation on photocatalytic properties, and (iii) to study the mechanisms
of charge transfer and organic pollutants degradation. Initially, this work investigated the
synthesis of BiVO4 by oxidant peroxide method, and it was observed that the main reason
for the poor photoactivity of BiVO4 is its inability to reduce O2 to O2
•-. In order to
overcome this challenge, we attempted to obtain heterostructures between monoclinic
BiVO4 and tetragonal BiVO4 phases (m-BiVO4/t-BiVO4) by oxidant peroxide method. It
was verified that m-BiVO4/t-BiVO4 heterostructures exhibited better photocatalytic
performance in the degradation of methylene blue (MB) dye than their isolated phases,
under visible irradiation. HRTEM images revealed that the heterostructured sample was
composed of nanoparticles with average size of 10 nm, the m-BiVO4/t-BiVO4 interface
was also evidenced. The mechanisms of charge transfer between the phases and organic
pollutant oxidation were proposed in agreement with the obtained results by XPS, mass
spectroscopy and TOC analysis. Holes (h+), superoxide anion (O2
-•) and hydroxyl radicals
(•OH) were the primary active species responsible for MB photodegradation. The increase
of m-BiVO4/t-BiVO4 heterostructure photoactivity occurred due to the formation of a
suitable heterojunction, promoting the effective separation of photogenerated charges.
However, this method presented difficulties in the control of heterostructure morphology
and composition, because it is based on a simultaneous two-phase crystallization process.
Therefore, we developed a novel strategy for heterostructure tailoring driven by solubility
difference of two semiconductors that possess at least one metal in common. For this, the
formation of heterojunctions by BiVO4 growth on Bi2O3 or Bi2O2CO3 self-sacrificial
surface was evaluated. For the Bi2O3/BiVO4 heterostructures, the amount of
xiv
heterojunctions formed between Bi2O3 and BiVO4 was tuned by synthesis process
variables (temperature and V concentration) and the particle size of preformed Bi2O3 (i.e.
solubility difference). The heterojunctions were evidenced by HRTEM images, where the
growth of BiVO4 nanoparticles on Bi2O3 or Bi2O2CO3 surface was observed. Time
resolved photoluminescence and XPS results confirmed that the formation of type-II
heterostructure led to increase of charge carriers lifetime. The proposed synthesis strategy
showed efficiency in obtaining Bi2O3/BiVO4 and Bi2O2CO3/BiVO4 heterostructures with
controlled morphology and composition that improved photoactivity when compared to
their isolated phases. / Semicondutores que podem ser ativados sob radiação visível são
de grande interesse para processos fotocatalíticos. O BiVO4 é um semicondutor com valor
de band-gap de 2,4 eV, no entanto, este apresenta uma baixa atividade fotocatalítica,
devido principalmente à rápida recombinação do par elétron/buraco. Uma estratégia
eficiente para superar este desafio é pela formação de heteroestruturas do tipo-II. Diante
deste panorama, este trabalho teve por objetivo: (i) desenvolver métodos para obter
heteroestruturas de BiVO4 com diferentes compostos de bismuto (t-BiVO4, Bi2O3 e
Bi2O2CO3), (ii) avaliar o efeito das heterojunções nas propriedades fotocatalíticas, e (iii)
estudar os mecanismos de transferência de carga e de degradação de poluentes orgânicos.
Inicialmente, este trabalho lidou com a síntese do BiVO4 pelo método de oxidação por
peróxido e observou-se que a principal razão para baixa atividade fotocatalítica do BiVO4
é sua incapacidade de reduzir o O2 em O2
•-. Com o objetivo de superar este desafio,
buscou-se a obtenção de heterostruturas de BiVO4 nas fases monoclínica e tetragonal (m-
BiVO4/t-BiVO4), pelo método de oxidação por peróxido. Foi verificado que a
heteroestrutura m-BiVO4/t-BiVO4 exibiu uma melhor performance fotocatalítica na
degradação do corante azul de metileno (AM) do que as suas fases isoladas, sob radiação
visível. As imagens de microscopia eletrônica de transmissão de alta resolução (HRTEM)
revelaram que a amostra heteroestruturada é composta de nanopartículas com tamanho
médio de 10 nm, a interface m-BiVO4/t-BiVO4 também foi evidenciada. Foram propostos
mecanismos de transferência de cargas entre as fases e de oxidação do poluente orgânico
de acordo com os resultado obtidos pelas técnicas de XPS, espectrometria de massas e
análise de TOC. Os buracos (h+), radicais superóxidos (O2
-•) e hidroxila (•OH) foram as
principais espécies ativas responsáveis na fotodegradação do AM. O aumento da
fotoatividade da heteroestrutura m-BiVO4/t-BiVO4 ocorreu devido a formação de uma
heterojunção adequada, que promove a separação efetiva das cargas foto-geradas. No
entanto, este método apresentou dificuldade no controle morfológico e da composição da
heteroestruturas por ser um processo de cristalização simultânea das fases, portanto, foi
desenvolvido uma nova estratégia para a produção de heteroestruturas dirigido pela
diferença de solubilidade entre dois semicondutores que possuem ao menos um metal em
comum. Para tal, a formação de heterojunções pelo crescimento do BiVO4 na superfície
xii
de sacrifício do Bi2O3 ou Bi2O2CO3 pré-formados foi avaliada. Para a heteroestrutura
Bi2O3/BiVO4 foi observado que a quantidade de junções formadas foi dependente da
solubilidade do precursor que foi variado pelo tamanho de partícula do Bi2O3. As
heterojunções foram evidenciadas por imagens de HRTEM, onde foi observado a
formação de nanopartículas do BiVO4 na superfície das fases de Bi2O3 e Bi2O2CO3. Os
espectros de fotoluminescência e de XPS confirmaram que a formação da heteroestrutura
do tipo-II conduziu ao aumento do tempo de vida dos portadores de carga. Esta estratégia
de síntese proposta mostrou-se eficiente, já que foi possível obter heteroestruturas de
Bi2O3/BiVO4 e Bi2O2CO3/BiVO4 com controle de morfologia e composição, que resultou
no aumento da fotoatividade quando comparado as fases isoladas. / FAPESP: 13/13888-0
|
10 |
Development of Bismuth Oxide-Based Materials for Iodide Capture and PhotocatalysisZhang, Liping 26 November 2018 (has links)
No description available.
|
Page generated in 0.0338 seconds