1 |
Exploration génétique de l'hypothyroïdie congénitale par dysgénésie thyroïdienneMagne, Fabien 10 1900 (has links)
L'hypothyroïdie congénitale par dysgénésie thyroïdienne (HCDT, ectopie dans plus de 80 %) a une prévalence de 1 cas sur 4000 naissances vivantes. L’HCDT est la conséquence d'une défaillance de la thyroïde embryonnaire à se différencier, à se maintenir ou à migrer vers sa localisation anatomique (partie antérieure du cou), qui aboutit à une absence totale de la thyroïde (athyréose) ou à une ectopie thyroïdienne (linguale ou sublinguale). Les HCDT sont principalement non-syndromiques (soit 98% des cas sont non-familiale), ont un taux de discordance de 92% chez les jumeaux monozygotes, et ont une prédominance féminine et ethnique (i.e., Caucasienne). La majorité des cas d’HCDT n’a pas de cause connue, mais est associée à un déficit sévère en hormones thyroïdiennes (hypothyroïdie). Des mutations germinales dans les facteurs de transcription liés à la thyroïde (NKX2.1, FOXE1, PAX8, NKX2.5) ont été identifiées dans seulement 3% des patients atteints d’HCDT sporadiques et l’analyse de liaisons exclue ces gènes dans les rares familles multiplex avec HCDT. Nous supposons que le manque de transmission familiale claire d’HCDT peut résulter de la nécessité d’au moins deux « hits » génétiques différents dans des gènes importants pour le développement thyroïdien.
Pour répondre au mieux nos questions de recherche, nous avons utilisé deux approches différentes: 1) une approche gène candidat, FOXE1, seul gène impliqué dans l’ectopie dans le modèle murin et 2) une approche en utilisant les techniques de séquençage de nouvelle génération (NGS) afin de trouver des variants génétiques pouvant expliquer cette pathologie au sein d’une cohorte de patients avec HCDT.
Pour la première approche, une étude cas-contrôles a été réalisée sur le promoteur de FOXE1. Il a récemment été découvert qu’une région du promoteur de FOXE1 est différentiellement méthylée au niveau de deux dinucléotides CpG consécutifs, définissant une zone cruciale de contrôle de l’expression de FOXE1. L’analyse d’association basée sur les haplotypes a révélé qu’un haplotype (Hap1: ACCCCCCdel1C) est associé avec le HCDT chez les Caucasiens (p = 5x10-03). Une réduction significative de l’activité luciférase est observée pour Hap1 (réduction de 68%, p<0.001) comparé au promoteur WT de FOXE1. Une réduction de 50% de l’expression de FOXE1 dans une lignée de cellules thyroïdienne humaine est suffisante pour réduire significativement la migration cellulaire (réduction de 55%, p<0.05). Un autre haplotype (Hap2: ACCCCCCC) est observé moins fréquemment chez les Afro-Américain comparés aux Caucasiens (p = 1.7x10-03) et Hap2 diminue l’activité luciférase (réduction de 26%, p<0.001). Deux haplotypes distincts sont trouvés fréquemment dans les contrôles Africains (Black-African descents). Le premier haplotype (Hap3: GTCCCAAC) est fréquent (30.2%) chez les contrôles Afro-Américains comparés aux contrôles Caucasiens (6.3%; p = 2.59 x 10-9) tandis que le second haplotype (Hap4: GTCCGCAC) est trouvé exclusivement chez les contrôles Afro-Américains (9.4%) et est absent chez les contrôles Caucasiens (P = 2.59 x 10-6).
Pour la deuxième approche, le séquençage de l’exome de l’ADN leucocytaire entre les jumeaux MZ discordants n’a révélé aucune différence. D'où l'intérêt du projet de séquençage de l’ADN et l’ARN de thyroïdes ectopiques et orthotopiques dans lesquelles de l'expression monoallélique aléatoire dans a été observée, ce qui pourrait expliquer comment une mutation monoallélique peut avoir des conséquences pathogéniques. Finalement, le séquençage de l’exome d’une cohorte de 36 cas atteints d’HCDT a permis d’identifier de nouveaux variants probablement pathogéniques dans les gènes récurrents RYR3, SSPO, IKBKE et TNXB. Ces quatre gènes sont impliqués dans l’adhésion focale (jouant un rôle dans la migration cellulaire), suggérant un rôle direct dans les défauts de migration de la thyroïde. Les essais de migration montrent une forte diminution (au moins 60% à 5h) de la migration des cellules thyroïdiennes infectées par shRNA comparés au shCtrl dans 2 de ces gènes. Des zebrafish KO (-/- et +/-) pour ces nouveaux gènes seront réalisés afin d’évaluer leur impact sur l’embryologie de la thyroïde. / Congenital hypothyroidism by thyroid dysgenesis (CHTD) is a common disorder with prevalence at birth of 1 in 4000 live births. CHTD is the consequence of a failure of embryonic thyroid to differentiate or to migrate to its anatomical location (front of the neck), which leads to a total lack of thyroid (athyreosis) or an ectopic thyroid (lingual or sublingual). The most common category is ectopic thyroid diagnosis (up 85%). Most cases of CHTD have no known cause, but are associated with severe deficiency of thyroid hormones (hypothyroidism). The clinical diagnosis of hypothyroidism is usually possible only when permanent brain damage is already present. On the other hand, biochemical screening on the second day of life allows initiating replacement therapy from the second week of life, pre-empting severe intellectual deficit associated with the congenital hypothyroidism. Even with early treatment (an average of 9 days), loss of IQ, which is not exclusively due to the severity of hypothyroidism, can still be observed. Molecular markers may identify patients at risk for intellectual deficit (by e.g., genes involved in neuronal migration and the thyroid during development). These patients might benefit from early intervention to stimulate their neurocognitive development.
Cases of CHTD are mainly non-syndromic and sporadic (in 98% of cases, there is no other affected in the family), have a discordant rate of 92% in monozygotic twins, and a female and ethnic (Caucasian) dominance. Germline mutations in thyroid-related transcription factors have been identified in only 3% of patients with sporadic CHTD, and linkage analysis has excluded these genes in rare multiplex families with CHTD. In addition, non-penetrating mutations among close relatives (for Nkx2.5 gene) suggest that modifying genes as germline variants de novo copy number (CNV) and / or somatic mutations are associated with CHTD.
To respond to this research questions, we used two different approaches: 1) a candidate gene approach studying FOXE1, the only gene involved in ectopic thyroid in the mouse model and, 2) an approach using next generation sequencing techniques (NGS) to find genetic variants that could explain this pathology using a cohort of mostly sporadic CHTD. Variants and genes discovered by these two different approaches have been validated and their functional impact on the thyroid gland was evaluated by several experiments.
|
2 |
Molecular determinants of congenital hypothyroidism due to thyroid dysgenesisAbu-Khudir, Rasha 04 1900 (has links)
L’hypothyroïdie congénitale par dysgénésie thyroïdienne (HCDT) est la condition endocrinienne néonatale la plus fréquemment rencontrée, avec une incidence d’un cas sur 4000 naissances vivantes. L’HCDT comprend toutes les anomalies du développement de la thyroïde. Parmi ces anomalies, le diagnostic le plus fréquent est l’ectopie thyroïdienne (~ 50% des cas). L’HCDT est fréquemment associée à un déficit sévère en hormones thyroïdiennes (hypothyroïdisme) pouvant conduire à un retard mental sévère si non traitée. Le programme de dépistage néonatal assure un diagnostic et un traitement précoce par hormones thyroïdiennes. Cependant, même avec un traitement précoce (en moyenne à 9 jours de vie), un retard de développement est toujours observé, surtout dans les cas les plus sévères (c.-à-d., perte de 10 points de QI).
Bien que des cas familiaux soient rapportés (2% des cas), l’HCTD est essentiellement considérée comme une entité sporadique. De plus, plus de 92% des jumeaux monozygotiques sont discordants pour les dysgénésies thyroïdiennes et une prédominance féminine est rapportée (spécialement dans le cas d’ectopies thyroïdiennes), ces deux observations étant clairement incompatible avec un mode de transmission héréditaire mendélien. Il est donc cohérent de constater que des mutations germinales dans les facteurs de transcription thyroïdiens connus (NKX2.1, PAX8, FOXE1, and NKX2.5) ont été identifiées dans seulement 3% des cas sporadiques testés et furent, de plus, exclues lors d’analyse d’association dans certaines familles multiplex. Collectivement, ces données suggèrent que des mécanismes non mendéliens sont à l’origine de la majorité des cas de dysgénésie thyroïdienne. Parmi ces mécanismes, nous devons considérer des modifications épigénétiques, des mutations somatiques précoces (au stade du bourgeon thyroïdien lors des premiers stades de l’embryogenèse) ou des défauts développementaux stochastiques (c.-à-d., accumulation aléatoire de mutations germinales ou somatiques). Voilà pourquoi nous proposons un modèle «2 hits » combinant des mutations (épi)génétiques germinales et somatiques; ce modèle étant compatible avec le manque de transmission familial observé dans la majorité des cas d’HCDT.
Dans cette thèse, nous avons déterminé si des variations somatiques (épi)génétiques sont associées à l’HCTD via une approche génomique et une approche gène candidat. Notre approche génomique a révélé que les thyroïdes ectopiques ont un profil d’expression différent des thyroïdes eutopiques (contrôles) et que ce profil d’expression est enrichi en gènes de la voie de signalisation Wnt. La voie des Wnt est cruciale pour la migration cellulaire et pour le développement de plusieurs organes dérivés de l’endoderme (p.ex. le pancréas). De plus, le rôle de la voie des Wnt dans la morphogénèse thyroïdienne est supporté par de récentes études sur le poisson-zèbre qui montrent des anomalies du développement thyroïdien lors de la perturbation de la voie des Wnt durant différentes étapes de l’organogénèse. Par conséquent, l’implication de la voie des Wnt dans l’étiologie de la dysgénésie thyroïdienne est biologiquement plausible.
Une trouvaille inattendue de notre approche génomique fut de constater que la calcitonine était exprimée autant dans les thyroïdes ectopiques que dans les thyroïdes eutopiques (contrôles). Cette trouvaille remet en doute un dogme de l’embryologie de la thyroïde voulant que les cellules sécrétant la calcitonine (cellules C) proviennent exclusivement d’une structure extrathyroïdienne (les corps ultimobranchiaux) fusionnant seulement avec la thyroïde en fin de développement, lorsque la thyroïde a atteint son emplacement anatomique définitif.
Notre approche gène candidat ne démontra aucune différence épigénétique (c.-à-d. de profil de méthylation) entre thyroïdes ectopiques et eutopiques, mais elle révéla la présence d’une région différentiellement méthylée (RDM) entre thyroïdes et leucocytes dans le promoteur de FOXE1. Le rôle crucial de FOXE1 dans la migration thyroïdienne lors du développement est connu et démontré dans le modèle murin. Nous avons démontré in vivo et in vitro que le statut de méthylation de cette RDM est corrélé avec l’expression de FOXE1 dans les tissus non tumoraux (c.-à-d., thyroïdes et leucocytes). Fort de ces résultats et sachant que les RDMs sont de potentiels points chauds de variations (épi)génétiques, nous avons lancé une étude cas-contrôles afin de déterminer si des variants génétiques rares localisés dans cette RDM sont associés à la dysgénésie thyroïdienne.
Tous ces résultats générés lors de mes études doctorales ont dévoilé de nouveaux mécanismes pouvant expliquer la pathogenèse de la dysgénésie thyroïdienne, condition dont l’étiologie reste toujours une énigme. Ces résultats ouvrent aussi plusieurs champs de recherche prometteurs et vont aider à mieux comprendre tant les causes des dysgénésies thyroïdiennes que le développement embryonnaire normal de la thyroïde chez l’homme. / Congenital hypothyroidism from thyroid dysgenesis (CHTD) is the most common congenital endocrine disorder with an incidence of 1 in 4,000 live births. CHTD includes multiple abnormalities in thyroid gland development. Among them, the most common diagnostic category is thyroid ectopy (~ 50 % of cases). CHTD is frequently associated with a severe deficiency in thyroid hormones (hypothyroidism), which can lead to severe mental retardation if left untreated. The newborn biochemical screening program insures the rapid institution of thyroid hormone replacement therapy. Even with early treatment (on average at 9 d), subtle developmental delay is still be observed in severe cases (i.e., IQ loss of 10 points).
Although there have been some reports of familial occurrence (in 2% of the cases), CHTD is mainly considered as a sporadic entity. Furthermore, monozygotic (MZ) twins show a high discordance rate (92%) for thyroid dysgenesis and female predominance is observed in thyroid dysgenesis (especially thyroid ectopy), these two observations being incompatible with simple Mendelian inheritance. In addition, germline mutations in the thyroid related transcription factors NKX2.1, PAX8, FOXE1, and NKX2.5 have been identified in only 3% of sporadic cases and linkage analysis has excluded these genes in some multiplex families with CHTD. Collectively, these data point to the involvement of non-Mendelian mechanisms in the etiology of the majority of cases of thyroid dysgenesis. Among the plausible mechanisms are epigenetic modifications, somatic mutations occurring in the thyroid bud early during embryogenesis, or stochastic developmental events. Hence, we proposed a two-hit model combining germline and somatic (epi)genetic variations that can explain the lack of clear familial transmission of CTHD.
In this present thesis, we assessed the role of somatic (epi)genetic variations in the pathogenesis of thyroid dysgenesis via a genome-wide as well as a candidate gene approach. Our genome wide approach revealed that ectopic thyroids show a differential gene expression compared to that of normal thyroids, with enrichment for the Wnt signalling pathway. The Wnt signalling pathway is crucial for cell migration and for the development of several endoderm-derived organs (e.g., pancreas). Moreover, a role of Wnt signalling in thyroid organogenesis was further supported by recent zebrafish studies which showed thyroid abnormalities resulting from the disruption of the Wnt pathway during different steps of organogenesis. Thus, Wnt pathway involvement in the etiology of thyroid ectopy is biologically plausible.
An unexpected finding of our genome-wide gene expression analysis of ectopic thyroids was that they express calcitonin similar to normally located (orthotopic) thyroids. Such a finding, although in contradiction with our current knowledge of the embryological development of the thyroid attributes C cell origins to extrathyroidal structures (ultimobrachial bodies) upon fusion with a fully-formed, normally situated gland.
Using a candidate gene approach, we were unable to demonstrate any differences in the methylation profile between ectopic and eutopic thyroids, but nevertheless we documented the presence of a differentially methylated region (DMR) between thyroids and leukocytes in the promoter of FOXE1, a gene encoding the only thyroid related transcription factor known to play a crucial role in regulating the migration of the thyroid precursors during development as shown by animal studies. We demonstrated by in vivo and in vitro studies that the methylation status of this DMR is correlated with differential expression of FOXE1 in non-tumoral tissues (thyroids and leukocytes). Knowing that DMRs are hotspots for epi(genetic) variations, its screening among CTHD patients is justifiable in our search for a molecular basis of thyroid dysgenesis, currently underway in a case-control study.
The results generated during my graduate studies represent unique and novel mechanisms underlying the pathogenesis of CHTD, the etiology of which is still an enigma. They also paved the way for many future studies that will aid in better understanding both the normal and pathogenic development of the thyroid gland.
|
Page generated in 0.0239 seconds