• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design and Validation of a Wearable SmartSole for Continuous Detection of Abnormal Gait

Wucherer, Karoline M 01 June 2023 (has links) (PDF)
Residual gait abnormalities are common following lower limb injury and/or stroke and can have several negative impacts on an individual’s life. Without continuous treatment and follow up, individuals can be prone to chronic pain as abnormal gait may lead to non-physiological loading of the musculoskeletal system. The current industry gold standard for diagnosing abnormal gait requires specialty equipment that is generally only available at designated gait facilities. Due to the inaccessibility and high cost associated with these facilities, a wearable SmartSole device to continuously detect abnormal gait was proposed. A previous iteration of the SmartSole was unable to properly detect abnormal gait and also experienced fracturing throughout the 3D printed body. In this present study, sensor placement and material selection were reconsidered to address these limitations. The objective of this study was to determine if a redesigned SmartSole could identify events of abnormal gait through validation and verification testing against the industry standard force plates. In total, 14 participants were selected for gait studies, 7 with pronounced gait abnormalities (e.g. limps), and 7 with physiological gait. Parameters of interest included stance time, gait cycle time, and the ratio of the force magnitudes recorded during heel strike and toe off. Results indicated that the SmartSole was effective at determining overall event timings within the gait cycle, as both stance and cycle time had strong, positive correlations (left stance: r = 0.761, right stance: r = 0.560, left cycle: r = 0.688) with the force plates, with the exception of right foot cycle time. The sole was not effective at measuring actual values of events during gait as there were weak correlations with the force plates. Furthermore, when comparing parameters of interest between the injured and non-injured sides for test participants with gait abnormalities, neither the SmartSole nor the force plates were able to detect significant differences. The inability of the sole to accurately collect force magnitudes or to detect abnormal gait leads to the conclusion that additional sensors may need to be implemented. Future iterations may consider placement of additional sensors to allow for a “fuller picture” and the inclusion of other types of sensors for improved, continuous tracking of gait abnormalities.
2

Ultrafast Raman Loss Spectroscopic Investigations of Excited State Structural Dynamics of Bis(phenylethynyl)benzene and trans-Stilbene

Mallick, Babita January 2017 (has links) (PDF)
The subject of this thesis is the design and development of a unified set up for femtosecond transient absorption and ultrafast Raman loss spectroscopy and demonstrate its potential in capturing the ultrafast photophysical and photochemical processes with excellent time and frequency resolution. Ultrafast spectroscopy has been serving as a powerful tool for understanding the structural dynamical properties of molecules in the condensed and gas phase. The advent of ultrashort pulses with their high peak power enables the laser spectroscopic community to study molecular reaction dynamics and photophysics that happen at extremely short timescales, ranging from picosecond to femtosecond. These processes can be measured with extremely high time resolution, which helps to resolve the under-lying molecular process. But in order to understand the global mechanism of the underlying molecular processes, we have to resolve the nuclear dynamics with the proper frequency resolution. However, achieving both, time and frequency resolutions simultaneously is not possible according to the Heisenberg uncertainty principle. Later, this limitation was overcome by femtosecond stimulated Raman spectroscopy (FSRS), a third order non-linear Raman spectroscopy. In this thesis we introduced the ultrafast Raman loss spectroscopic (URLS) technique which is analogous to FSRS, offering the modern ultrafast community to resolve molecular processes with better signal-to-noise ratio along with proper time and frequency resolution. We demonstrate the experimental procedure including the single shot detection scheme to measure whitelight background, ground state Ra-man, transient absorption and transient Raman in shot-to-shot detection fashion. URLS has been applied to understand the excited state planarization dynamics of 1,4-bis(phenylethynyl)benzene (BPEB) in different solvents. In addition, excitation wavelength dependent conformational reorganization dynamics of different sub-sets of thermally activated ground state population of BPEB are also discussed. Using the same techniques along with femtosecond transient absorption, we demonstrate the ultrafast vibrational energy transfer and the role of coherent oscillations of low frequency vibrations on the solution phase photo-isomerization of trans-stilbene from an optically excited state. The effects of solvents on the coherent nuclear motion are also discussed in the context of reaction rates. 2

Page generated in 0.0138 seconds