• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 75
  • 8
  • 7
  • 6
  • 6
  • 4
  • 3
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 165
  • 32
  • 32
  • 29
  • 26
  • 25
  • 24
  • 23
  • 22
  • 14
  • 14
  • 12
  • 12
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Assessing Biological Interactions and Potential Impacts of Emerging Carbonaceous Materials to Terrestrial Organisms

Li, Dong January 2011 (has links)
This research addresses the potential ecotoxicity of two emerging carbonaceous materials: C 60 and biochar. The use of these materials is rapidly increasing, as well as their potential for widespread applications. Thus, information about unintended consequences associated the widespread use, incidental or accidental release, and disposal of these emerging materials is needed. The environmental impacts of C 60 , its stable water suspension (nC 60 ), and biochar are assessed here using bacteria and earthworms as model receptors. The antibacterial activity of nC 60 can be mitigated by the presence of natural organic matter as a soil constituent or dissolved in the water column. Sorption to soil might decrease the bioavailability of nC 60 and thus its toxicity to bacteria. Aqueous organic matter also may mitigate nC 60 toxicity. Pristine C 60 showed toxicity to the earthworm's reproduction and was rapidly bioaccumulated by earthworms, although to a lower extent than smaller phenanthrene molecules that are more hydrophobic; thus, the large molecular size of C 60 hinders its bioaccumulation. Less bioaccumulation occurred at higher C 60 concentration in soil, which is counterintuitive and reflects that higher C 60 concentrations that exceed the soil sorption capacity exist as larger precipitates that are less bioavailable. Earthworms avoided soils amended with high concentrations of dry biochar, and experienced significant weight loss after 28-day exposure. The avoidance response was likely to avert desiccation rather than to avoid potential toxicants (i.e., PAHs formed during biochar production by pyrolysis) or nutrient scarcity. By wetting the biochar to field capacity before exposing the worms, this adverse effect can be completely mitigated. Overall, this research provides a foundation for ecotoxicity assessment associated with exposure to C 60 or biochar, and establishes a method by which other emerging materials can be evaluated for their potential environmental impacts.
92

Electron energy loss spectroscopy of fullerene materials

Nicholls, Rebecca Jane January 2006 (has links)
This thesis is comprised of two closely related studies of fullerenes. The first part is an investigation of C60 and C70 nanocrystals using both experimental and simulated electron energy loss (EEL) spectra. Through a detailed comparison of particular features in EEL spectra collected from these materials in a transmission electron microscope, with simulated spectra, it is established that differences in spectra from different materials can be linked to particular aspects of the structural models. For example, in the case of C60 differences in experimental spectra from different samples can be linked to differences in the bond lengths within the molecules of different samples. In the case of C70, it is found that features within the spectrum which have previously been attributed to the ten equatorial atoms do not have this origin in a crystal. The second part is an experimental investigation of endohedral fullerenes Nd@C82 and Sc3N@C80. The effect of temperature on the EEL spectrum is investigated and, in the case of Nd@C82, the effect of the presence of different isomers is also investigated. Spectra are successfully obtained from the encapsulated atoms, and the importance of careful experiments in terms of avoiding contamination is highlighted.
93

Mathematical modelling of nano-scaled structures, devices and materials

Cox, Barry James. January 2007 (has links)
Thesis (Ph.D.)--University of Wollongong, 2007. / Typescript. Includes bibliographical references: leaf 206-217.
94

The dynamic mechanical response of polymer-based nanocomposites and network glasses

Putz, Karl William, Green, Peter F., January 2004 (has links) (PDF)
Thesis (Ph. D.)--University of Texas at Austin, 2004. / Supervisor: Peter F. Green. Vita. Includes bibliographical references.
95

The Synthesis and Applications of β-Cyanoporphyrins in Molecular Systems for Artificial Photosynthesis

January 2015 (has links)
abstract: As sunlight is an ideal source of energy on a global scale, there are several approaches being developed to harvest it and convert it to a form that can be used. One of these is though mimicking the processes in natural photosynthesis. Artificial photosynthetic systems include dye sensitized solar cells for the conversion of sunlight to electricity, and photoelectrosynthetic cells which use sunlight to drive water oxidation and hydrogen production to convert sunlight to energy stored in fuel. Both of these approaches include the process of the conversion of light energy into chemical potential in the form of a charge-separated state via molecular compounds. Porphyrins are commonly used as sensitizers as they have well suited properties for these applications. A high potential porphyrin with four nitrile groups at the beta positions, a β-cyanoporphyrin (CyP), was investigated and found to be an excellent electron acceptor, as well as have the necessary properties to be used as a sensitizer for photoelectrosynthetic cells for water oxidation. A new synthetic method was developed which allowed for the CyP to be used in a number of studies in artificial photosynthetic systems. This dissertation reports the theories behind, and the results of four studies utilizing a CyP for the first time; as a sensitizer in a DSSC for an investigation of its use in light driven water oxidation photoelectrosynthetic cells, as an electron acceptor in a proton coupled electron transfer system, in a carotene-CyP dyad to study energy and electron transfer processes between these moieties, and in a molecular triad to study a unique electron transfer process from a C60 radical anion to the CyP. It has been found that CyPs can be used as powerful electron acceptors in molecular systems to provide a large driving force for electron transfer that can aid in the process of the conversion of light to electrochemical potential. The results from these studies have led to a better understanding of the properties of CyPs, and have provided new insight into several electron transfer reactions. / Dissertation/Thesis / Doctoral Dissertation Chemistry 2015
96

Study on Self-Assembly of Fullerenes and Biopolymers

Mohanta, Vaishakhi January 2015 (has links) (PDF)
The understanding of self-assembly processes is important for fabrication of well-defined structures with new functionalities for applications in the area of biomedical sciences, material sciences and electronics. In this thesis, two types of self-assembly processes are described: (1) self-assembly of fullerene derivatives in water and (2) self-assembly on surfaces using layer-by-layer (LbL) approach. The various interactions and parameters involved in the self-assembly are detailed in the introductory chapter 1. The various internal parameters like molecular geometry, intramolecular and intermolecular forces that guides the self-assembly process of amphiphiles in water are discussed. The experimental procedures used in the present thesis for the fabrication of nanostructures via self-assembly approach are also described. In the later part of the chapter, the LbL technique for fabrication of thin films and microcapsules is reviewed where various interactions involved in the growth of LbL assembly are discussed. The effect of ionic strength and pH on the growth and property of LbL assemblies is elaborated. A brief discussion of the materials used in the thesis ‒ fullerene, bovine serum albumin (BSA) and nanocrystalline cellulose (NCC) is also provided The self-assembly behaviour of amphiphilic fullerene derivatives are described in chapter 2. Fullerene is anisotropically substituted with five polar hydroxyl groups using organo-copper reagent. The derivative can interact in water via the van der Waals and hydrophobic interactions of the fullerene moiety as well as the intermolecular hydrogen bonding among the hydroxyl groups and also with water. The penta-hydroxy fullerene derivative self-assembles in water as vesicular structures. The size of these vesicles can be varied by modifying the kinetics of self-assembly which was done by changing the rate of addition of non-solvent (water) to the solution of the fullerene derivative. In the second derivative, the hydroxyl groups are substituted with less polar methoxy groups. The penta-methoxy fullerene derivative cannot participate in inter-molecular hydrogen bonding formation unlike the penta-hydroxy derivative but there is possibility of hydrogen bond formation with water where oxygens on methoxy group can act as hydrogen bond acceptor. The penta-methoxy fullerene does not show any vesicle formation in water. The computational simulation studies were carried out on the two fullerene derivatives to understand the self-assembly behaviour of these two derivatives. Furthermore, the vesicle structures formed by the penta-hydroxy fullerene derivative are used for entrapment of hydrophobic polymer, poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) and also hydrophilic dye, Rhodamine B. In both the cases, fluorescence quenching is observed due to electron transfer reaction with fullerene and hence these fullerene vesicles can be used to study the effect of confinement on electron transfer reactions and other chemical dynamics. The layer-by-layer self-assembly approach for the fabrication of biopolymeric thin films and microcapsules is discussed in the chapters 3 to 6. The biocompatible nanoparticles and nanofibers were used as the components of the assembly. In chapter 3, we have described fabrication of thin film of bovine serum albumin (BSA) nanoparticles via LbL approach using biopolymer chitosan as the complementary polymer. The driving force for the assembly growth of the assembly was the electrostatic and complementary hydrogen bond formation between the two components. The idea of incorporating nanoparticles in the thin film was that the nanoparticles can act as reservoirs for functional materials. The films were loaded with anticancer drug doxorubicin and show pH dependent release of the drug. The various interactions involved in the LbL assembly of BSA nanoparticles and polymers were investigated towards understanding the growth mechanism of the assembly in chapter 4. The understanding of the interactions involved in the assembly formation is important in order to modify the conditions of the assembly for enhancing the growth. It is inferred from the study reported in this chapter that not only the interaction of nanoparticles with polymers but also the inter-particle interactions are important factors in determining the growth of LbL assembly of nanoparticles/polymers. The growth of the assembly is enhanced on minimizing the inter-particle repulsions, which was achieved in case of BSA nanoparticles by modifying the pH of the assembly. We also utilized the LbL self-assembly approach for the delivery of lipophilic drugs. The lipophilic drugs are difficult to administer in the body due to their poor water solubility and hence show poor pharmacokinetic profile. The methods for incorporating hydrophobic drugs in LbL assembled thin films and microcapsules are described in chapters 5 and 6. In chapter 5, hydrophobic molecules binding property of albumin has been exploited for solubilisation of a water-insoluble molecule, pyrene (model drug) and hydrophobic drug, curcumin, by preparation of non-covalent conjugates with BSA. The interaction with BSA provided negative zeta potential to the previously uncharged molecules and hence they can be incorporated in the LbL assembled thin films and microcapsules using electrostatic as well as hydrogen bonding interaction with biopolymer, chitosan. The fabrication of protein encapsulated stable microcapsules with hydrophobic molecules incorporated in the shell of the microcapsules has also been demonstrated. The microcapsules were further capable of loading hydrophilic molecules like Rhodamine B. Thus, this approach can be employed for fabrication of multi-agent carrier for hydrophobic and hydrophilic drugs as well as therapeutic macromolecules. In chapter 6, we have incorporated nanocrystalline cellulose (NCC) LbL assembled thin films and microcapsules. The assembly formed was porous in nature due to the nano-fibrous morphology of NCC. The nanoassemblies can act as potential drug delivery carrier, which has been demonstrated by loading anticancer drug doxorubicin, and a lipophilic drug, curcumin. Doxorubicin hydrochloride, the salt form of the drug, doxorubicin, has good water solubility and hence can be postloaded in the assembly by diffusion from its aqueous solution. In the case of curcumin, which has limited solubility in water, a stable aqueous dispersion of the drug was prepared via noncovalent interaction with NCC prior to incorporation in the LbL assembly. The interaction of various other lipophilic drugs with NCC was analysed computationally.
97

Supramolecular crown ether containing donor-acceptor ensembles / Des éthers couronnes pour la construction de systèmes donneur-accepteur supramoléculaires / Complejos supramoleculares dador-aceptor basados en éteres corona

Moreira navarro, Luis 05 November 2013 (has links)
Afin d'obtenir une meilleure compréhension de l'étape clé du système photosynthétique (la formation d’un état à charges séparées), une nouvelle famille de systèmes donneur-accepteur supramoléculaires a été préparée.Nous avons notamment acquis une meilleure compréhension de la nature des interactions π-π entre le C60 et les porphyrines (résultant d'un processus régi principalement par des forces de van der Waals) et de l'affinité des éthers couronnes vis-à-vis des fullerènes (résultant d'une combinaison entre interactions π-π, n-π et CH-π). Les propriétés supramoléculaires des dimères de porphyrines ont été aussi explorées, prouvant leur communication électronique à travers leurs sous-unités. Finalement, la coopérativité chélate d'un de nos systèmes a été évaluée par la molarité efficace. / In order to gain a better understanding of the key step of the photosynthetic system (formation of a charged separated stated), a series of new supramolecular crown ether containing donnor-aceptor ensembles have been obtained.Notably we have gained further insight in the nature of π-π stacking between C60 and porphyrins (arising from a process mainly governed by van der Waals forces) and the affinity of crown ethers towards fullerenes(arising from an interplay of π-π, n-π and CH-π interactions). The properties of porphyrin arrays have been explored, evidencing the electronic communication through subunits. Finally, the chelate cooperativity of one our systems has also been assessed through the effective molarity.
98

Design and Synthesis of Organic Molecular Models of Artificial Photosynthetic Reaction Center

January 2014 (has links)
abstract: A clean and sustainable alternative to fossil fuels is solar energy. For efficient use of solar energy to be realized, artificial systems that can effectively capture and convert sunlight into a usable form of energy have to be developed. In natural photosynthesis, antenna chlorophylls and carotenoids capture sunlight and transfer the resulting excitation energy to the photosynthetic reaction center (PRC). Small reorganization energy, λ and well-balanced electronic coupling between donors and acceptors in the PRC favor formation of a highly efficient charge-separated (CS) state. By covalently linking electron/energy donors to acceptors, organic molecular dyads and triads that mimic natural photosynthesis were synthesized and studied. Peripherally linked free base phthalocyanine (Pc)-fullerene (C60) and a zinc (Zn) phthalocyanine-C60 dyads were synthesized. Photoexcitation of the Pc moiety resulted in singlet-singlet energy transfer to the attached C60, followed by electron transfer. The lifetime of the CS state was 94 ps. Linking C60 axially to silicon (Si) Pc, a lifetime of the CS state of 4.5 ns was realized. The exceptionally long-lived CS state of the SiPc-C60 dyad qualifies it for applications in solar energy conversion devices. A secondary electron donor was linked to the dyad to obtain a carotenoid (Car)-SiPc-C60 triad and ferrocene (Fc)-SiPc-C60 triad. Excitation of the SiPc moiety resulted in fast electron transfer from the Car or Fc secondary electron donors to the C60. The lifetime of the CS state was 17 ps and 1.2 ps in Car-SiPc-C60 and Fc-SiPc-C60, respectively. In Chapter 3, an efficient synthetic route that yielded regioselective oxidative porphyrin dimerization is presented. Using Cu2+ as the oxidant, meso-β doubly-connected fused porphyrin dimers were obtained in very high yields. Removal of the copper from the macrocycle affords a free base porphyrin dimer. This allows for exchange of metals and provides a route to a wider range of metallporphyrin dimers. In Chapter 4, the development of an efficient and an expedient route to bacteriopurpurin synthesis is discussed. Meso-10,20- diformylation of porphyrin was achieved and one-pot porphyrin diacrylate synthesis and cyclization to afford bacteriopurpurin was realized. The bacteriopurpurin had a reduction potential of - 0.85 V vs SCE and λmax, 845 nm. / Dissertation/Thesis / Ph.D. Chemistry 2014
99

Estudo ab initio de fulerenos menores e C IND.60 e seus derivados para aplicações em eletrônica molecular / Ab initio study of small fullerenes and C6s and its derivatives for applications in molecular electronics

Lucas Viani 16 November 2006 (has links)
O objetivo desta dissertação é estudar os efeitos estruturais e eletrônicos em fulerenos menores e C60 causados pela dopagem substitucional com boro e nitrogênio para aplicações em eletrônica molecular. Estudamos as propriedades eletrônicas e estruturais de possíveis retificadores moleculares formados por pares de fulerenos menores dopados com boro e nitrogênio. A molécula C@C59N foi estudada e suas propriedades estruturais e eletrônicas comparadas com as do endofulereno N@C60. No estudo da dopagem dos fulerenos utilizamos o método semiempírico Parametric Method 3 (PM3). Foram calculadas as geometrias de equilíbrio e os calores de formação, que serviram para investigar a estabilidade relativa dessas moléculas. Para cada dopante identificamos os sítios de substituição que mais favorecem à estabilidade termodinâmica das moléculas. Dentre todos os fulerenos menores estudados os isômeros do C5o atingiram a maior estabilidade quando comparados com o C60. Com os pares de moléculas mais estáveis obtidas no trabalho anterior, montamos os retificadores em uma estrutura do tipo D-ponte-A, onde D e A representam doador e aceitador de elétrons. Para as moléculas isoladas, calculamos as estruturas eletrônicas através da Teoria do Funcional da Densidade (DFT) com o funcional BLYP e a base 6-31G*. No caso dos pares usamos o método DFT com o funcional BSLYP e a base 3-21G* para obter as geometrias de equilíbrio e as estruturas eletrônicas. Aplicando um campo elétrico sobre as moléculas, investigamos a facilidade de transferência de cargas entre fulerenos. Concluímos que fulerenos menores possuem um grande potencial para construção de um diodo molecular. As propriedades da molécula hipotética C@C59N foram comparadas com as bem Conhecidas C60, C59N e N@C60. A energia de ligação por átomo da molécula é comparável às energias de ligação dos outros fulerenos, em particular do seu isômero N@C60. Devido à tendência dos azafulerenos em formar dímeros, verificamos a estabilidade da molécula N@C60 quando comparada com o dímero N@C60 )2. . Tanto as geometrias quanto as estruturas eletrônicas foram calculados via DFT, BSLYP/6-31G*. Concluímos deste estudo que a molécula C@Ge¡/ é estável energeticamente, como também a interessante possibilidade do uso do dímero (C@C59N)2 como um bit quântico. / The present dissertation is devoted to the study of the effects on small fullerenes and 060 caused by the substitutional doping of boron and nitrogen for applications in molecular electronics. Electronic and structural properties of molecular rectifiers formed by small fullerenes doped with boron and nitrogen have been studied. The molecule C@C59 N has been investigated and its structural and electronic properties compared with those of the endofullerene N@C60 To study the doping of the fullerenes we used the semiempirical method Para­ metric Method 3 (PM3). Ground state conformations and heats of formation were obtained and used to investigate the relative molecular stability. We indentified the most favorable molecular substitution sites for the thermodynamic stability of each dopant. Among all small fullerenes investigated, the isomers of C50reached the largest stability when compared with 060 Molecular rectifiers with a structure of the type D-bridge-A, where D and A indicate electron donor and acceptor, respectively, were built with the most stable pairs found in the previous part of. The Density Functional Theory (DFT) with the functional BLYP and the base 6-31G* was used to calculate the electronic struc­ tures of the isolated molecules. Geometry optimizations and electronic structures of the pairs, were carried by DFT, B3LYP j3 21G*, method. The asymmetry of the charge transfer was assessed through the application of an externai electric field. We concluded that small fullerenes are promising candidates for the construction of molecular rectifiers. The properties of the hypothetical molecule C@C59 N were compared with those well known C60 , C59 N e N@C60 molecules. The binding energy of this molecule is comparable with that of the other fullerenes, in particular with that of its isomer N@C60 Due to the tendency of the azafullerene in forming dimers, the stability of the dimer (C@C59 N)2 was investigated. The molecular conformations and the electronic structures were obtained by the DFT, B3LYP/6-31G*, method. We con­ cluded that (C@C59 N) 2 molecule should be as stable as the azafullerene dimer. Our results point to the interesting possibility of using this system as a quantum bit.
100

Estudo estrutural e eletrônico de fulerenos e diamondóides encapsulados em nanotubos de carbono / Structural and electronical study of encapsulated fullerenes and diamondoids in carbon nanotubes

Troche, Karla Souza 21 November 2007 (has links)
Orientador: Douglas Soares Galvão / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Fisica Gleb Wataghin / Made available in DSpace on 2018-08-10T00:38:23Z (GMT). No. of bitstreams: 1 Troche_KarlaSouza_D.pdf: 4475542 bytes, checksum: 174644e87f1d2a1a584c4b840a379b95 (MD5) Previous issue date: 2007 / Resumo: Este trabalho apresenta o estudo teórico de nano-estruturas de carbono de interesse em nanociência. Ele envolve o estudo estrutural, eletrônico e mecânico de estruturas híbridas que são o resultado do encapsulamento de moléculas de carbono (em nosso caso: fulerenos e diamondóides) inseridas em nanotubos de carbono. Utilizando métodos clássicos de Dinâmica Molecular fizemos um estudo do ordenamento molecular dos fulerenos de simetria esférica como o C 60, fulerenos assimétricos C 70 e C78 e diamondóides. Para observar à dependência da ordenação molecular na simetria cilíndrica com o tamanho do nanotubo de carbono e simetria molecular da molécula inserida. Com simulações de dinâmica molecular investigamos as mudanças das propriedades mecânicas de nanotubos de carbono quando são preenchidos com moléculas de C60 e diamondoides. Previmos as mudanças no material e características promissoras das estruturas híbridas. Aplicamos o método Tight-binding baseado na teoria do funcional da densidade para determinar as propriedades eletrônicas dos novos híbridos Fulerenos@nanotubo de carbono. Previmos mudanças nas propriedades e potenciais aplicações em nanotecnologia / Abstract: This work presents a theoretical study of carbon nanostructures with great interest in nanoscience world. It is about the structural, electronic and mechanical study of hybrid structures that result from encapsulation of carbon molecules (fullerenes and diamondoids) introduced inside carbon nanotubes. Using classical methods of molecular dynamics we performed a study of molecular ordering of fullerenes with spherical geometry, C60, asymmetric fullerenes C70 and C78 and diamondoids. We observed dependence of the molecular ordering on cylindrical geometry with the carbon nanotube size and the geometry of the inserted molecule. Through molecular dynamics simulations, we investigated the change on mechanical properties of carbon nanotubes when filled with C60 molecules and diamondoids. We also predict changes on the material and promising characteristics of hybrid structures. We applied the Tight-binding method based on the theory of density functional to determine the electronic properties of the new hybrid fullerenes@carbon nanotube. We predict interesting properties and powerful applications on nanotechnology / Doutorado / Física da Matéria Condensada / Doutor em Ciências

Page generated in 0.0174 seconds